Mostrar el registro sencillo

dc.contributor.authorTirnauca, Cristina 
dc.contributor.authorStan, Diana 
dc.contributor.authorMeissner, Johannes Mario
dc.contributor.authorSalas Gómez, Diana
dc.contributor.authorFernández Gorgojo, Mario
dc.contributor.authorInfante Ceberio, Jon 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-01-31T18:47:13Z
dc.date.available2024-01-31T18:47:13Z
dc.date.issued2022-09-25
dc.identifier.issn2227-7390
dc.identifier.otherPID2020-114593GA-I00es_ES
dc.identifier.otherPI17/00936es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31365
dc.description.abstractParkinson’s disease (PD) is often detected only in later stages, when about 50% of nigrostriatal dopaminergic projections have already been lost. Thus, there is a need for biomarkers to monitor the earliest phases, especially for those that are at higher risk. In this work, we explore the use of machine learning methods to diagnose PD by analyzing gait alterations via an inertial sensors system that participants in the study wear while walking down a 15 m long corridor in three different scenarios. To achieve this goal, we have trained six well-known machine learning models: support vector machines, logistic regression, neural networks, k nearest neighbors, decision trees and random forest. We thoroughly explored several ways to mitigate the problems derived from the small amount of available data. We found that, while achieving accuracy rates of over 70% is quite common, the accuracy of the best model trained is only slightly above the 80% mark. This model has high precision and specificity (over 90%), but lower sensitivity (only 71%). We believe that these results are promising, especially given the size of the population sample (41 PD patients and 36 healthy controls), and that this research venue should be further explored.es_ES
dc.description.sponsorshipThis work has been supported by the project PID2020-114593GA-I00 financed by MCIN/AEI/ 10.13039/501100011033 (Ministry of Science and Innovation, Spain) to D.S. and by Fondo de Investigación Sanitaria-ISCIII (Grant number PI17/00936) to J.I.es_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMathematics 2022, 10(19), 3500es_ES
dc.subject.otherParkinson’s diseasees_ES
dc.subject.otherGait alterationses_ES
dc.subject.otherClassificationes_ES
dc.subject.otherSupport vector machinees_ES
dc.subject.otherLogistic regressiones_ES
dc.subject.otherNeural networkses_ES
dc.subject.otherK nearest neighborses_ES
dc.subject.otherDecision treeses_ES
dc.subject.otherRandom forestes_ES
dc.titleA machine learning approach to detect Parkinson's disease by looking at gait alterationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/math10193500es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/math10193500
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.