Mostrar el registro sencillo

dc.contributor.authorFernández Quiruelas, Valvanuz 
dc.contributor.authorBlanco Real, José Carlos 
dc.contributor.authorCofiño González, Antonio Santiago 
dc.contributor.authorFernández Fernández, Jesús (matemático) 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-01-29T10:23:00Z
dc.date.available2024-01-29T10:23:00Z
dc.date.issued2015-10
dc.identifier.issn0167-739X
dc.identifier.issn1872-7115
dc.identifier.otherCGL2011-28864es_ES
dc.identifier.otherCGL2010-22158-C02-01es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31285
dc.description.abstractThe current availability of a variety of computing infrastructures including HPC, Grid and Cloud resources provides great computer power for many fields of science, but their common profit to accomplish large scientific experiments is still a challenge. In this work, we use the paradigm of climate modeling to present the key problems found by standard applications to be run in hybrid distributed computing infrastructures and propose a framework to allow a climate model to take advantage of these resources in a transparent and user-friendly way. Furthermore, an implementation of this framework, using the Weather Research and Forecasting system, is presented as a working example. In order to illustrate the usefulness of this framework, a realistic climate experiment leveraging Cluster, Grid and Cloud resources simultaneously has been performed. This test experiment saved more than 75% of the execution time, compared to local resources. The framework and tools introduced in this work can be easily ported to other models and are probably useful in other scientific areas employing data- and CPU-intensive applications.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish National R&D Plan under projects WRF4G (CGL2011-28864, co-funded by the European Regional Development Fund—ERDF) and CORWES (CGL2010-22158-C02-01) and the IS-ENES2 project from the 7FP of the European Commission (grant agreement no. 312979). C.B. acknowledges financial support from Programa de Personal Investigador en Formación Predoctoral from Universidad de Cantabria, co-funded by the regional government of Cantabria. The authors are thankful to the developers of third party software (e.g. GridWay, WRFV3, python and netcdf), which was intensively used in this work. the authors are also thankful to the reviewers who contributed to improve the final manuscript.es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceFuture Generation Computer Systems, 2015, 51, 36-44es_ES
dc.subject.otherGrid computinges_ES
dc.subject.otherCloud computinges_ES
dc.subject.otherHPCes_ES
dc.subject.otherRegional climate modeles_ES
dc.subject.otherWRFes_ES
dc.subject.otherHybrid distributed computing infrastructureses_ES
dc.titleLarge-scale climate simulations harnessing clusters, grid and cloud infrastructureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.future.2015.04.009es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/312979/EU/Infrastructure for the European Network for Earth System modelling - Phase 2/IS-ENES2/es_ES
dc.identifier.DOI10.1016/j.future.2015.04.009
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license