Mostrar el registro sencillo

dc.contributor.authorGutiérrez Gutiérrez, Jaime 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-01-25T14:23:57Z
dc.date.available2025-03-15T00:16:51Z
dc.date.issued2024-02
dc.identifier.issn1930-5346
dc.identifier.issn1930-5338
dc.identifier.otherPID2019-110633GB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31261
dc.description.abstractLet p be a prime and Fp the finite field with p elements. We show how, when given an superelliptic curve Y n + f(X) ∈ Fp[X, Y ] and an approximation to (v0, v1) ∈ F2 p such that vn 1 = −f(v0), one can recover (v0, v1) efficiently, if the approximation is good enough. As consequence we provide an upper bound on the number of roots of such bivariate polynomials where the roots have certain restrictions. The results has been motivated by the predictability problem for non-linear pseudorandom number generators and, other potential applications to cryptography.es_ES
dc.description.sponsorshipAuthor is partially supported by grant PID2019-110633GB-I00 funded by MCIN/AEI/10.13039/ 501100011033.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Institute of Mathematical Scienceses_ES
dc.rights© American Institute of Mathematical Sciences. This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Advances in Mathematics of Communications following peer review. The definitive publisher-authenticated version Jaime Gutierrez. Reconstructing points of superelliptic curves over a prime finite field. Advances in Mathematics of Communications, 2024, 18(1): 222-232. doi: 10.3934/amc.2022022, is available online at: https://www.aimsciences.org//article/doi/10.3934/amc.2022022es_ES
dc.sourceAdvances in Mathematics of Communications, 2024, 18(1), 222-232es_ES
dc.subject.otherSuperelliptic curveses_ES
dc.subject.otherLattice techniqueses_ES
dc.subject.otherPrime finite fieldses_ES
dc.subject.otherCryptographyes_ES
dc.titleReconstructing points of superelliptic curves over a prime finite fieldes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3934/amc.2022022
dc.type.versionacceptedVersiones_ES
dc.date.embargoEndDate2025-03-01


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo