Reconstructing points of superelliptic curves over a prime finite field
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/31261DOI: 10.3934/amc.2022022
ISSN: 1930-5346
ISSN: 1930-5338
Registro completo
Mostrar el registro completo DCAutoría
Gutiérrez Gutiérrez, Jaime
Fecha
2024-02Derechos
© American Institute of Mathematical Sciences. This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Advances in Mathematics of Communications following peer review. The definitive publisher-authenticated version Jaime Gutierrez. Reconstructing points of superelliptic curves over a prime finite field. Advances in Mathematics of Communications, 2024, 18(1): 222-232. doi: 10.3934/amc.2022022, is available online at: https://www.aimsciences.org//article/doi/10.3934/amc.2022022
Publicado en
Advances in Mathematics of Communications, 2024, 18(1), 222-232
Editorial
American Institute of Mathematical Sciences
Disponible después de
2025-03-01
Palabras clave
Superelliptic curves
Lattice techniques
Prime finite fields
Cryptography
Resumen/Abstract
Let p be a prime and Fp the finite field with p elements. We show how, when given an superelliptic curve Y n + f(X) ∈ Fp[X, Y ] and an approximation to (v0, v1) ∈ F2 p such that vn 1 = −f(v0), one can recover (v0, v1) efficiently, if the approximation is good enough. As consequence we provide an upper bound on the number of roots of such bivariate polynomials where the roots have certain restrictions. The results has been motivated by the
predictability problem for non-linear pseudorandom number generators and, other potential applications to cryptography.
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]