Mostrar el registro sencillo

dc.contributor.authorFernández Quiruelas, Valvanuz 
dc.contributor.authorFernández Fernández, Jesús (matemático) 
dc.contributor.authorBaeza, Claudio
dc.contributor.authorCofiño González, Antonio Santiago 
dc.contributor.authorGutiérrez Llorente, José Manuel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-01-25T09:28:11Z
dc.date.available2024-01-25T09:28:11Z
dc.date.issued2009-06
dc.identifier.issn1865-0473
dc.identifier.issn1865-0481
dc.identifier.urihttps://hdl.handle.net/10902/31246
dc.description.abstractRecent trends in climate modeling find in GRID computing a powerful way to achieve results by sharing geographically distributed computing and storage resources. In particular, ensemble prediction experiments are based on the generation of multiple model simulations to explore, statistically, the existing uncertainties in weather and climate forecast. In this paper, we present a GRID application consisting of a state-of-the-art climate model. The main goal of the application is to provide a tool that can be used by a climate researcher to run ensemble-based predictions on the GRID for sensitivity studies. One of the main duties of this tool is the management of a workflow involving long-term jobs and data management in a user-friendly way. In this paper we show that, due to weaknesses of current GRID middleware, this management is complex task. Those weaknesses made necessary the development of a robust workflow adapted to the requirements of the climate application. As an illustrative scientific challenge, the application is applied to study the El Niño phenomenon, by simulating an El Niño year with different forcing conditions and analyzing the precipitation response over south-American countries subject to flooding risk.es_ES
dc.description.sponsorshipThis work has been partially funded by the EELA project under the 6th Framework Program of the European Commission (contract no. 026409) and the Spanish Ministry of Education and Science through the Juan de la Cierva program.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución-NoComercial 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceEarth Science Informatics, 2009, 2(1-2), 75-82es_ES
dc.subject.otherCAM modeles_ES
dc.subject.otherClimate modelses_ES
dc.subject.otherEl Niño phenomenones_ES
dc.subject.otherGRID computinges_ES
dc.subject.otherWorkflow managementes_ES
dc.titleExecution management in the GRID, for sensitivity studies of global climate simulationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s12145-008-0018-zes_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/26409/EU/Einfrastructure shared between Europe and Latin America/EELA/
dc.identifier.DOI10.1007/s12145-008-0018-z
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución-NoComercial 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 3.0 España