Mostrar el registro sencillo

dc.contributor.authorOrtiz Imedio, Rafael 
dc.contributor.authorGómez Coma, Lucía 
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorOrtiz Sainz de Aja, Alfredo 
dc.contributor.authorIbáñez Mendizábal, Raquel 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-01-24T08:00:09Z
dc.date.available2024-01-24T08:00:09Z
dc.date.issued2019-05-01
dc.identifier.issn0011-9164
dc.identifier.otherCTQ2015-66078-Res_ES
dc.identifier.otherCTM2014-57833-Res_ES
dc.identifier.otherCTM2017-87850-Res_ES
dc.identifier.urihttps://hdl.handle.net/10902/31208
dc.description.abstractPromotion of renewable energies to substitute carbon-based energy has boosted the development of new membrane technologies based on Salinity Gradient Power (SGP) by Reverse Electrodialysis (RED). This paper is focused on providing a useful, feasible and robust tool for the design of this technology, able to predict the behaviour under different operational conditions, critical for RED performance. Therefore, open circuit voltage (OCV), internal resistance (Ri) and gross power (P) are evaluated. Furthermore, the model predictability has been validated with experimental results obtained working with three cases of study corresponding to seawater/WWTP effluent, brines/brackish water and an intermediate concentration gradient scenario. Feed flow rate (Reynolds numbers from 2.7 to 13.6), and temperature (from 286 K to 297 K) have been also tested in a lab-scale set-up with 0.4 m2 of membrane area; the maximum power achieved at 297 ± 1 K was 0.66 W, 1.6 W and 0.3 W for the three cases respectively. The results highlight the strong influence of temperature and the dominance of the low compartment resistance on the process performance; thus, working with the highest possible SG does not always provide the best outcome, but a trade-off between SG and resistance of the dilute solution should be searched.es_ES
dc.description.sponsorshipFinancial support from Community of Cantabria - Regional Plan for the project: Gradisal “RM16-XX-046-SODERCAN/FEDER” is gratefully acknowledged. Moreover, authors acknowledge Spanish Ministry of Economy and Competitiveness for the projects CTM2015-66078-R, CTM2014-57833-R and CTM2017-87850-R and Dr. Jordi Carrillo for his advice and technical support.es_ES
dc.format.extent39 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceDesalination, 2019, 457, 8-21es_ES
dc.subject.otherReverse electrodialysis (RED)es_ES
dc.subject.otherSalinity gradient (SG)es_ES
dc.subject.otherIon exchange membrane (IEM)es_ES
dc.subject.otherGross powerInternal resistancees_ES
dc.titleComparative performance of salinity gradient power-reverse electrodialysis under different operating conditionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.desal.2019.01.005es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.desal.2019.01.005
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license