Mostrar el registro sencillo

dc.contributor.authorRicondo Cueva, Alba 
dc.contributor.authorCagigal Gil, Laura 
dc.contributor.authorPérez Díaz, Beatriz
dc.contributor.authorMéndez Incera, Fernando Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-01-18T11:48:06Z
dc.date.available2024-01-18T11:48:06Z
dc.date.issued2024-01-01
dc.identifier.issn0029-8018
dc.identifier.issn1873-5258
dc.identifier.otherPID2019-107053RB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31136
dc.description.abstractClimate change-induced sea level rise and increasing storm severity are significant stressors that threaten the livability of coastal areas worldwide. This research presents a site-specific metamodel based on SWASH (Simulating WAves till SHore) numerical model simulations that aim at simplifying in a fast and efficient manner the prediction of hydrodynamic variables along cross-shore profiles. To accomplish this, a large synthetic database of offshore wave and sea level conditions is created and downscaled using numerical modeling together with sampling, selection, and interpolation techniques. All these mathematical methods permit to replace the computationally intensive cost of classical dynamical downscaling. In addition, the metamodel uses dimensionality reduction techniques that allow to account for a comprehensive analysis of the primary patterns governing the coastal hydrodynamic behavior. The proposed tool has been numerically validated in three different idealized coral reef profiles, showing good skill at reproducing the spatial evolution of wave setup, wave heights associated with different frequency bands, and wave runup. The flexibility and robustness of the method make it very convenient for being used in coastal risk assessments, early warning systems, or climate change projections.es_ES
dc.description.sponsorshipThis research would not have been possible without funding from the Spanish Ministry of Science and Innovation, project Beach4cast PID2019-107053RB-I00. AR is funded by a Concepción Arenal predoctoral scholarship from the Universidad de Cantabria. LC acknowledges the funding from the Juan de la Cierva Formación FJC2021-046933-I/MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier BVes_ES
dc.rights© 2023 The Authors.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceOcean Engineering, 2024, 291, 116419es_ES
dc.subject.otherHybrid modeles_ES
dc.subject.otherCoral reefses_ES
dc.subject.otherPrincipal component analysises_ES
dc.subject.otherWave hydrodynamicses_ES
dc.subject.otherSpectral transformationes_ES
dc.titleHySwash: a hybrid model for nearshore wave processeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.oceaneng.2023.116419es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.oceaneng.2023.116419
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023 The Authors.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2023 The Authors.