Volcano transition in populations of phase oscillators with random nonreciprocal interactions
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/31113ISSN: 1539-3755
ISSN: 1550-2376
ISSN: 2470-0045
ISSN: 2470-0053
Registro completo
Mostrar el registro completo DCFecha
2023Derechos
© American Physical Society
Publicado en
Physical Review E, 2023, 108, 014202
Editorial
American Physical Society
Enlace a la publicación
Resumen/Abstract
Populations of heterogeneous phase oscillators with frustrated random interactions exhibit a quasiglassy state in which the distribution of local fields is volcanoshaped. In a recent work [Phys. Rev. Lett. 120, 264102 (2018)], the volcano transition was replicated in a solvable model using a low-rank, random coupling matrix M. We extend here that model including tunable nonreciprocal interactions, i.e., Mt ≠M. More specifically, we formulate two different solvable models. In both of them the volcano transition persists if matrix elements Mjk and Mkj are enough correlated. Our numerical simulations fully confirm the analytical results. To put our work in a wider context, we also investigate numerically the volcano transition in the analogous model with a full-rank random coupling matrix.
Colecciones a las que pertenece
- D15 Artículos [846]
- D15 Proyectos de Investigación [161]