Mostrar el registro sencillo

dc.contributor.authorTausia Hoyal, Javier 
dc.contributor.authorDelaux, Sebastien
dc.contributor.authorCamus Braña, Paula
dc.contributor.authorRueda Zamora, Ana Cristina 
dc.contributor.authorMéndez Incera, Fernando Javier 
dc.contributor.authorBryan, Karin R.
dc.contributor.authorPérez, Jorge
dc.contributor.authorCosta, Carine G.R.
dc.contributor.authorZyngfogel, Remy
dc.contributor.authorCofiño González, Antonio Santiago 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-01-12T09:38:49Z
dc.date.available2024-01-12T09:38:49Z
dc.date.issued2023-04
dc.identifier.issn0141-1187
dc.identifier.issn1879-1549
dc.identifier.urihttps://hdl.handle.net/10902/31073
dc.description.abstractIn conjunction with tides, storm surge is one major driver of coastal flooding associated with storm events. Because local inundation is strongly modulated by the local shape of the coastline and the bathymetric slope, accurate storm surge predictions using traditional numerical models require the use of very fine grids and are hence resource intensive. Therefore, the performance of a live prediction system based on such methods will likely be subject to a trade-off between prediction accuracy, prediction speed and cost. This study explores the use of data driven methods as an alternative to numerical models to reconstruct the daily storm surge maximum levels along the entire coast of New Zealand. Firstly, several atmospheric predictors are utilized that incorporate different variables, time lags and spatial domains, using 3 statistical models, in a selected number of locations in New Zealand, to find the combination that optimizes the reconstruction. Finally, the storm surge daily maxima are reconstructed with the different statistical models along the entire coast, using the best performing predictor. Results show very good performance for the best atmospheric predictor and statistical model, providing average values of 0.88 for the Pearson correlation coefficient and 4.3 cm for the root mean squared error metric (RMSE) (the average value for the RMSE in the 99% percentile is 8.2 cm). For the Kling?Gupta Efficiency (KGE; incorporating 3 sub-metrics: correlation, bias term and variability term), which is the metric used to rank the models, the average value is 0.82. Our results highlight the suitability of data driven models to simulate storm surge maximum levels, and prove the methodology is appropriate for finding a well performing atmospheric predictor that is able for reconstruct these values. Moreover, this methodology can be also applied to new variables, regions and problems, as there are no physical restrictions on the used predictors nor predictands.es_ES
dc.description.sponsorshipThis study is funded by the New Zealand Ministry of Business Innovation and Employment, under contract number MSVC1901. AR acknowledges the funding from the Juan de la Cierva-Incorporación IJC2020-043907-I/MCIN/AEI/10.13039/501100011033 and the European Union ‘‘NextGenerationEU’’/PRTR. PC acknowledges the funding from the María Zambrano RMZ-09/Ministerio de Universidades and the European Union "NextGenerationEU’’.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Ltdes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceApplied Ocean Research, 2023, 133, 103496es_ES
dc.subject.otherData-driven modelses_ES
dc.subject.otherStorm surgees_ES
dc.subject.otherAtmospheric predictores_ES
dc.subject.otherRapid reconstructionses_ES
dc.subject.otherNew Zealandes_ES
dc.subject.otherCoastlinees_ES
dc.titleRapid response data-driven reconstructions for storm surge around New Zealandes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.apor.2023.103496es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.apor.2023.103496
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International