Mostrar el registro sencillo

dc.contributor.authorGómez Acebo, Inés es_ES
dc.contributor.authorLlorca Díaz, Francisco Javier es_ES
dc.contributor.authorAlonso Molero, Jessicaes_ES
dc.contributor.authorDíaz Martínez, Martaes_ES
dc.contributor.authorPérez Gómez, Beatrizes_ES
dc.contributor.authorAmiano, Pilares_ES
dc.contributor.authorBelmonte, Thalíaes_ES
dc.contributor.authorMolina, Antonio J.es_ES
dc.contributor.authorBurgui, Rosanaes_ES
dc.contributor.authorCastaño Vinyals, Gemmaes_ES
dc.contributor.authorMoreno, Victores_ES
dc.contributor.authorMolina Barceló, Anaes_ES
dc.contributor.authorMarcos Gragera, Rafaeles_ES
dc.contributor.authorKogevinas, Manolises_ES
dc.contributor.authorPollán, Marinaes_ES
dc.contributor.authorDierssen Sotos, Trinidad es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-01-11T19:29:29Z
dc.date.available2024-01-11T19:29:29Z
dc.date.issued2023es_ES
dc.identifier.issn0949-2321es_ES
dc.identifier.issn2047-783Xes_ES
dc.identifier.urihttps://hdl.handle.net/10902/31065
dc.description.abstractPurpose: To build models combining circulating microRNAs (miRNAs) able to identify women with breast cancer as well as different types of breast cancer, when comparing with controls without breast cancer. Method: miRNAs analysis was performed in two phases: screening phase, with a total n = 40 (10 controls and 30 BC cases) analyzed by Next Generation Sequencing, and validation phase, which included 131 controls and 269 cases. For this second phase, the miRNAs were selected combining the screening phase results and a revision of the literature. They were quantified using RT-PCR. Models were built using logistic regression with LASSO penalization. Results: The model for all cases included seven miRNAs (miR-423-3p, miR-139-5p, miR-324-5p, miR-1299, miR-101-3p, miR-186-5p and miR-29a-3p); which had an area under the ROC curve of 0.73. The model for cases diagnosed via screening only took in one miRNA (miR-101-3p); the area under the ROC curve was 0.63. The model for disease-free cases in the follow-up had five miRNAs (miR-101-3p, miR-186-5p, miR-423-3p, miR-142-3p and miR-1299) and the area under the ROC curve was 0.73. Finally, the model for cases with active disease in the follow-up contained six miRNAs (miR-101-3p, miR-423-3p, miR-139-5p, miR-1307-3p, miR-331-3p and miR-21-3p) and its area under the ROC curve was 0.82. Conclusion: We present four models involving eleven miRNAs to differentiate healthy controls from different types of BC cases. Our models scarcely overlap with those previously reported.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceEuropean Journal of Medical Research, 2023, 28(1), 480es_ES
dc.subject.otherBreast canceres_ES
dc.subject.otherDiagnosises_ES
dc.subject.otherPrognosises_ES
dc.subject.otherScreeninges_ES
dc.subject.othermiRNAes_ES
dc.titleCirculating miRNAs signature on breast cancer: the MCC-Spain projectes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1186/s40001-023-01471-2es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International