Mostrar el registro sencillo

dc.contributor.authorRuiz del Río, Jorge es_ES
dc.contributor.authorGuedes, Gabrielaes_ES
dc.contributor.authorNovillo, Daniellees_ES
dc.contributor.authorLecue, Elenaes_ES
dc.contributor.authorPalanca Cuñado, Ana Rosa es_ES
dc.contributor.authorCortajarena, Aitziber L.es_ES
dc.contributor.authorVillar Ramos, Ana Victoria es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-01-09T15:30:36Z
dc.date.available2024-01-09T15:30:36Z
dc.date.issued2024es_ES
dc.identifier.issn1838-7640es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31025
dc.description.abstractThe discovery of extracellular vesicles (EVs) as efficient exogenous biotransporters of therapeutic agents into cells across biological membranes is an exciting emerging field. Especially the potential of EVs as targeted delivery systems for diseases with selective treatments, such as fibrosis, whose treatment causes side effects in other organs not involved in the disease. Methods: In this study, we collected embryonic fibroblast-derived EVs from two different centrifugation fractions, 10 K g and 100 K g fractions from a NIH-3T3 cell line loaded with an experimental drug. Mice with fibrotic hearts and lungs were obtained by administration of angiotensin II. We generated fluorescent EVs and bioluminescent drug to observe their accumulation by colocalization of their signals in fibrotic heart and lung. The biodistribution of the drug in various organs was obtained by detecting the Au present in the drug nanostructure. Results: The drug-loaded EVs successfully reduced fibrosis in pathological fibroblasts in vitro, and modified the biodistribution of the experimental drug, enabling it to reach the target organs in vivo. We described the pre-analytical characteristics of EVs related to physical variables, culture and harvesting conditions, crucial for their in vivo application as nanotransporters using a previously validated protein-based antifibrotic drug. The results showed the colocalization of EVs and the experimental drug in vivo and ex vivo and the efficient reduction of fibrosis in vitro. This work demonstrates that 10K-EVs and 100K-EVs derived from fibroblasts can act as effective biotransporters for targeted drug delivery to profibrotic fibroblasts, lungs, or heart.es_ES
dc.description.sponsorshipAcknowledgements. This work was partially supported by Agencia Estatal de Investigación, Spain PID2021-125702OBI00; RTI2018-095214-B-I00). A.L.C. acknowledges support by the European Research Council grant ERC-CoG-648071-ProNANO; the Agencia Estatal de Investigación Grant PDC2021-120957-I00 funded by MCIN/AEI/ 10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR” and Grant PID2019-111649RB-I00-ProTools funded by MCIN/AEI/ 10.13039/501100011033; and the Basque Government (RIS3-2019222005). G.G. thanks the financial support of “la Caixa” Foundation (ID100010434, fellowship: LCF/BQ/DI20/11780020). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency – Grant No. MDM-2017-0720 (CIC biomaGUNE). We thank Dr. L Martin-Jaular, and the Institut Curie EV platform, for helpful discussion. We thank Dr. S Mobini and Dr. M.U. González for their collaboration with the tracking analysis studies. We express our gratitude to Dr. V Gabarra for her valuable advice and assistance in finalizing the text.es_ES
dc.format.extent27 p.es_ES
dc.language.isoenges_ES
dc.publisherIvyspring International Publisheres_ES
dc.rightsAttribution 4.0 International*
dc.rights© The author(s)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceTheranostics, 2024, 14(1), 176-202es_ES
dc.subject.otherBiological antifibrotic nanocarrierses_ES
dc.subject.otherFibrosises_ES
dc.subject.otherProtein-nanomaterial hybridses_ES
dc.subject.otherExtracellular vesicleses_ES
dc.subject.otherIn vivo imaginges_ES
dc.titleFibroblast-derived extracellular vesicles as trackable efficient transporters of an experimental nanodrug with fibrotic heart and lung targetinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095214-B-I00/ES/ESTUDIO IN VIVO DE TERAPIAS MOLECULARES DE DISEÑO Y UN NANO-TRANSPORTADOR GENETICAMENTE MODIFICADO COMO SISTEMA ESPECIFICO CONTRA LA FIBROSIS CARDIACA/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-120957-I00/ES/PLATAFORMA PARA EL DESARROLLO RAPIDO DE TESTS DE DIAGNOTICO IN VITRO PARA LA MONITORIZACION CUANTITATIVA DE ANTICUERPOS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111649RB-I00/ES/INGENIERIA DE PROTEINAS PARA GENERAR HERRAMIENTAS AVANZADAS PARA APLICACIONES BIOMEDICAS Y BIOTECNOLOGICAS/es_ES
dc.identifier.DOI10.7150/thno.85409es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International