dc.contributor.author | Dunster, T.M. | |
dc.contributor.author | Gil Gómez, Amparo | |
dc.contributor.author | Segura Sala, José Javier | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2024-01-05T11:34:24Z | |
dc.date.available | 2024-01-05T11:34:24Z | |
dc.date.issued | 2024-03 | |
dc.identifier.issn | 0168-9274 | |
dc.identifier.issn | 1873-5460 | |
dc.identifier.other | PGC2018-098279-B-I00 | es_ES |
dc.identifier.other | PID2021-127252NB-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/31000 | |
dc.description.abstract | Numerical methods for the computation of the parabolic cylinder function U(a,z) for real a and complex z are presented. The main tools are recent asymptotic expansions involving exponential and Airy functions, with slowly varying analytic coefficient functions involving simple coefficients, and stable integral representations; these two main methods can be complemented with Maclaurin series and a Poincaré asymptotic expansion. We provide numerical evidence showing that the combination of these methods is enough for computing the function with 5 × 10-13 relative accuracy in double precision floating point arithmetic. | es_ES |
dc.description.sponsorship | The authors acknowledge financial support from Ministerio de Ciencia e Innovación, projects PGC2018-098279-B-I00 (MCIN/AEI/10.13039/ 501100011033/FEDER “Una manera de hacer Europa”) and PID2021-127252NB-I00 (MCIN/AEI/10.13039/ 501100011033/FEDER, UE). | es_ES |
dc.format.extent | 13 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Applied Numerical Mathematics, 2024, 197, 230-242 | es_ES |
dc.subject.other | Parabolic cylinder functions | es_ES |
dc.subject.other | Asymptotic expansions | es_ES |
dc.subject.other | Numerical quadrature | es_ES |
dc.subject.other | Numerical algorithms | es_ES |
dc.title | Computation of parabolic cylinder functions having complex argument | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.apnum.2023.11.017 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1016/j.apnum.2023.11.017 | |
dc.type.version | publishedVersion | es_ES |