Computation of parabolic cylinder functions having complex argument
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2024-03Derechos
Attribution-NonCommercial-NoDerivatives 4.0 International
Publicado en
Applied Numerical Mathematics, 2024, 197, 230-242
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Parabolic cylinder functions
Asymptotic expansions
Numerical quadrature
Numerical algorithms
Resumen/Abstract
Numerical methods for the computation of the parabolic cylinder function U(a,z) for real a and complex z are presented. The main tools are recent asymptotic expansions involving exponential and Airy functions, with slowly varying analytic coefficient functions involving simple coefficients, and stable integral representations; these two main methods can be complemented with Maclaurin series and a Poincaré asymptotic expansion. We provide numerical evidence showing that the combination of these methods is enough for computing the function with 5 × 10-13 relative accuracy in double precision floating point arithmetic.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]