• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Semismooth newton method for boundary bilinear control

    Ver/Abrir
    SemismoothNewtonMeth ... (319.8Kb)
    Identificadores
    URI: https://hdl.handle.net/10902/30939
    DOI: 10.1109/LCSYS.2023.3337747
    ISSN: 2475-1456
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Casas Rentería, EduardoAutoridad Unican; Chrysafinos, Konstantinos; Mateos Alberdi, MarianoAutoridad Unican
    Fecha
    2023-11-29
    Derechos
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Control Systems Letters, 2023, 7, 3549-3554
    Editorial
    Institute of Electrical and Electronics Engineers, Inc.
    Enlace a la publicación
    https://doi.org/10.1109/LCSYS.2023.3337747
    Palabras clave
    Optimal control
    Bilinear control
    Semismooth Newton method
    Convergence analysis
    Resumen/Abstract
    We study a control-constrained optimal control problem governed by a semilinear elliptic equation. The control acts in a bilinear way on the boundary, and can be interpreted as a heat transfer coefficient. A detailed study of the state equation is performed and differentiability properties of the control-to-state mapping are shown. First and second order optimality conditions are derived. Our main result is the proof of superlinear convergence of the semismooth Newton method to local solutions satisfying no-gap second order sufficient optimality conditions as well as a strict complementarity condition.
    Colecciones a las que pertenece
    • D20 Artículos [468]
    • D20 Proyectos de Investigación [328]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España