dc.contributor.author | Casas Rentería, Eduardo | |
dc.contributor.author | Kunisch, Karl | |
dc.contributor.author | Mateos Alberdi, Mariano | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2023-12-21T18:15:26Z | |
dc.date.available | 2024-06-01T22:58:04Z | |
dc.date.issued | 2023-05 | |
dc.identifier.issn | 0272-4979 | |
dc.identifier.issn | 1464-3642 | |
dc.identifier.other | MTM2017-83185-P | es_ES |
dc.identifier.other | PID2020-114837GB-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/30938 | |
dc.description.abstract | The numerical approximation of an optimal control problem governed by a semilinear parabolic equation and constrained by a bound on the spatial
-norm of the control at every instant of time is studied. Spatial discretizations of the controls by piecewise constant and continuous piecewise linear functions are investigated. Under finite element approximations, the sparsity properties of the continuous solutions are preserved in a natural way using piecewise constant approximations of the control, but suitable numerical integration of the objective functional and of the constraint must be used to keep the sparsity pattern when using spatially continuous piecewise linear approximations. We also obtain error estimates and finally present some numerical examples. | es_ES |
dc.description.sponsorship | The first and third authors were supported by MCIN/ AEI/10.13039/501100011033/ under research projects MTM2017-83185-P and PID2020-114837GB-I00. The second was supported by the European Research Council advanced grant 668998 (OCLOC) under the EU’s H2020 research program. | es_ES |
dc.format.extent | 29 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.rights | © The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications Institute of Mathematics and its Applications. This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Numerical Analysis following peer review. The version of record Eduardo Casas, Karl Kunisch, Mariano Mateos, Error estimates for the numerical approximation of optimal control problems with nonsmooth pointwise-integral control constraints, IMA Journal of Numerical Analysis, Volume 43, Issue 3, May 2023, Pages 1485-1518 is available online at: https:// doi.org/10.1093/imanum/drac027 | es_ES |
dc.source | IMA Journal of Numerical Analysis, 2023, 43(3), 1485-1518 | es_ES |
dc.title | Error estimates for the numerical approximation of optimal control problems with nonsmooth pointwise-integral control constraints | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1093/imanum/drac027 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114837GB-I00/ES/CONTROL OPTIMO DE ECUACIONES EN DERIVADAS PARCIALES NO LINEALES. ESTUDIO TEORICO, ANALISIS NUMERICO Y APLICACIONES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83185-P/ES/CONTROL OPTIMO DE ECUACIONES EN DERIVADAS PARCIALES NO LINEALES Y APLICACIONES/ | |
dc.identifier.DOI | 10.1093/imanum/drac027 | |
dc.type.version | acceptedVersion | es_ES |