Mostrar el registro sencillo

dc.contributor.authorFernández Caso, Kevin 
dc.contributor.authorMolera Janer, Martí
dc.contributor.authorAndreu Arbella, Teresa
dc.contributor.authorSolla Gullón, José
dc.contributor.authorMontiel Leguey, Vicente
dc.contributor.authorDíaz Sainz, Guillermo 
dc.contributor.authorÁlvarez Guerra, Manuel 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-12-21T17:58:32Z
dc.date.available2023-12-21T17:58:32Z
dc.date.issued2024-01-15
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.otherPID2019-108136RB-C31es_ES
dc.identifier.otherPID2019-108136RB-C32es_ES
dc.identifier.otherPID2019-108136RB-C33es_ES
dc.identifier.otherPID2020-112845RB-I00es_ES
dc.identifier.otherTED2021-129810B-C21es_ES
dc.identifier.otherPLEC2022-009398es_ES
dc.identifier.urihttps://hdl.handle.net/10902/30937
dc.description.abstractElectrocatalytic reduction of CO2 is a promising alternative for storing energy and producing valuable products, such as formic acid/formate. Continuous gas-phase CO2 electroreduction has shown great potential in producing high concentrations of formic acid or formate at the cathode while allowing the oxygen evolution or the hydrogen oxidation reactions to occur at the anode. It is advantageous to use a more relevant oxidation reaction, such as glycerol which is a plentiful by-product of current biodiesel production process. This work successfully manages to couple the glycerol oxidation reaction with continuous gas-phase CO2 electroreduction to formate with the implementation of Ni-Co foam-based anodes. The MEA-electrolyzer developed can achieve significantly high formate concentrations of up to 359 g L-1 with high Faradaic efficiencies of up to 95%, while also producing dihydroxyacetone at a rate of 0.434 mmol m−2 s−1. In comparison with existing literature, this represents an excellent trade-off between relevant figures of merit and can remarkably contribute to a future implementation of this coupled electrochemical system approach at larger scales.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge financial support through projects PID2019-108136RB-C31, PID2019-108136RB-C32 and PID2019-108136RB-C33, PID2020-112845RB-I00, TED2021–129810B-C21 and PLEC2022-009398 (MCIN/AEI/10.13039/501100011033 and Unión Europea Next GenerationEU/PRTR). This project has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No 101118265​.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceChemical Engineering Journal, 2024, 480, 147908es_ES
dc.subject.otherContinuous CO2 electroreductiones_ES
dc.subject.otherGas-phase operationes_ES
dc.subject.otherMembrane electrode assemblyes_ES
dc.subject.otherSingle pass glycerol oxidation reactiones_ES
dc.subject.otherNi-Co foam-based anodeses_ES
dc.titleCoupling glycerol oxidation reaction using Ni-Co foam anodes to CO2 electroreduction in gas-phase for continuous co-valorizationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cej.2023.147908es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/HORIZON/101118265/Demonstrating energy intensive industry-integrated solutions to produce liquid renewable energy carriers from CAPTUred carbon emissionS/CAPTUS/
dc.identifier.DOI10.1016/j.cej.2023.147908
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International