Mostrar el registro sencillo

dc.contributor.authorCos Guerra, Olga de 
dc.contributor.authorCastillo Salcines, Valentín 
dc.contributor.authorCantarero Prieto, David 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-12-19T13:20:39Z
dc.date.available2023-12-19T13:20:39Z
dc.date.issued2023-12
dc.identifier.issn1361-1682
dc.identifier.issn1467-9671
dc.identifier.urihttps://hdl.handle.net/10902/30900
dc.description.abstractThis research analyzes the spatiotemporal trend of 23,121 monkeypox virus cases in the multi-country outbreak that affected 82 countries from January 2022 to July 2022. The spatiotemporal trends analysis is developed using open data and GIS to model 3D bins and emerging hot spots globally (data by country) and nationally (data by region) for hardest hit countries, like the USA and Spain.The implemented methodology distinguishes between problem areas -as significant hot spots- and countries with no pattern.Results show consecutive hot spot patterns in Western Europe and high location quotients in North America. Factually, the countries with consecutive patterns record 16,494 cases, that is, 71.34% of the cases, where 7.63% of the world population live. At the national level, in the analysis of the USA and Spain, the results reveal regional differences with significative hot spots in California and on the East Coast of the USA and the Mediterranean coast of Spain. The proposed methodology facilitates the monitoring of the spatiotemporal evolution of monkeypox cases and is scalable and replicable using non-arbitrary and statistical parameters. The findings indicate problematic zones in real-time, enabling policymakers to develop focused interventions and proactive strategies to mitigate the future risk of monkeypox.es_ES
dc.description.sponsorshipThis work was supported by the Valdecilla Biomedical Research Institute (IDIVAL) [Research projects INNVAL 20/03 and PRIMVAL21/01] and by the Universidad de Cantabria [License of geo-technological software Esri, ArcGIS Pro].es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherWiley-Blackwelles_ES
dc.rightsCC-BY-NC 4.0 © 2023 The Authors.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceTransactions in GIS, 2023, 27(8), 2175-2196es_ES
dc.titleSpatiotemporal multiscale diagnosis model to proactively respond to the multi-country monkeypox virus outbreak in 2022es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1111/tgis.13114es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1111/tgis.13114
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

CC-BY-NC 4.0 © 2023 The Authors.Excepto si se señala otra cosa, la licencia del ítem se describe como CC-BY-NC 4.0 © 2023 The Authors.