Mostrar el registro sencillo

dc.contributor.authorFernández González, Javier 
dc.contributor.authorRumayor Villamil, Marta 
dc.contributor.authorDomínguez Ramos, Antonio 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-12-13T16:47:13Z
dc.date.available2023-12-13T16:47:13Z
dc.date.issued2023-10-23
dc.identifier.issn2691-3704
dc.identifier.otherPID2020-112845RB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/30859
dc.description.abstractThe development of emerging decarbonization technologies requires advanced tools for decision-making that incorporate the environmental perspective from the early design. Today, Life Cycle Assessment (LCA) is the preferred tool to promote sustainability in the technology development, identifying environmental challenges and opportunities and defining the final implementation pathways. So far, most environmental studies related to decarbonization emerging solutions are still limited to midpoint metrics, mainly the carbon footprint, with global sustainability implications being relatively unexplored. In this sense, the Planetary Boundaries (PBs) have been recently proposed to identify the distance to the ideal reference state. Hence, PB-LCA methodology can be currently applied to transform the resource use and emissions to changes in the values of PB control variables. This study shows a complete picture of the LCA’s role in developing emerging technologies. For this purpose, a case study based on the electrochemical conversion of CO2 to formic acid is used to show the possibilities of LCA approaches highlighting the potential pitfalls when going beyond greenhouse gas emission reduction and obtaining the absolute sustainability level in terms of four PBs.es_ES
dc.description.sponsorshipFinancial support from the project PID2020-112845RB-I00 funded by MCIN/AEI/10.13039/501100011033 is gratefully acknowledged. J.F.-G. would like to acknowledge the financial support of the Spanish Ministry of Science, Innovation (MICIN) for the concession of the FPU grant (19/05483).es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJACS Au, 2023, 3(10), 2631-2639es_ES
dc.subject.otherLife Cycle Assessmentes_ES
dc.subject.otherPlanetary boundarieses_ES
dc.subject.otherCO2 recyclinges_ES
dc.subject.otherDecarbonizationes_ES
dc.subject.otherEmerging technologieses_ES
dc.titleThe relevance of Life Cycle Assessment tools in the development of emerging decarbonization technologieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/jacsau.3c00276es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112845RB-I00/ES/ENERGIA RENOVABLE A PRODUCTOS: PRUEBA DE CONCEPTO Y ANALISIS DE SOSTENIBILIDAD/es_ES
dc.identifier.DOI10.1021/jacsau.3c00276
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International