Mostrar el registro sencillo

dc.contributor.authorIbarra-Vázquez, Gerardo
dc.contributor.authorRamírez-Montoya, María Soledad
dc.contributor.authorBuenestado Fernández, Mariana 
dc.contributor.authorOlague, Gustavo
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-12-04T13:46:10Z
dc.date.available2023-12-04T13:46:10Z
dc.date.issued2023
dc.identifier.issn2405-8440
dc.identifier.urihttps://hdl.handle.net/10902/30784
dc.description.abstractThis article aims to study open education competency data through machine learning models to determine whether models can be built on decision rules using the features from the students? perceptions and classify them by the level of competency. Data was collected from a convenience sample of 326 students from 26 countries using the eOpen instrument. Based on a quantitative research approach, we analyzed the eOpen data using two machine learning models considering these findings: 1) derivation of decision rules from students? perceptions of knowledge, skills, and attitudes or values related to open education to predict their competence level using Decision Trees and Random Forests models, 2) analysis of the prediction errors in the machine learning models to find bias, and 3) description of decision trees from the machine learning models to understand the choices that both models made to predict the competency levels. The results confirmed our hypothesis that the students? perceptions of their knowledge, skills, and attitudes or values related to open education and its sub-competencies produced satisfactory data for building machine learning models to predict the participants? competency levels.es_ES
dc.description.sponsorshipThe authors would like to thank the financial support from Tecnologico de Monterrey through the “Challenge-Based Research Funding Program 2022”. Project ID #003-IFE001-C2-T3–T.es_ES
dc.format.extent15 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceHeliyon, 2023, 9, e20597es_ES
dc.subject.otherOpen educationes_ES
dc.subject.otherCompetency leveles_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherEducational innovationes_ES
dc.subject.otherHigher educationes_ES
dc.titlePredicting open education competency level: A machine learning approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.heliyon.2023.e20597es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.heliyon.2023.e20597
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International