Global solutions for a supercritical drift-diffusion equation
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2016-06Derechos
© <2016> This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Publicado en
Advances in Mathematics, 2016, 295, 334-367
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Drift–diffusion equation
Nonlocal diffusion
Global existence
Resumen/Abstract
We study the global existence of solutions to a one-dimensional drift-diffusion equation with logistic term, generalizing the classical parabolic-elliptic Keller-Segel aggregation equation arising in mathematical biology. In particular, we prove that there exists a global weak solution, if the order of the fractional diffusion α∈(1-c1, 2], where c1>0 is an explicit constant depending on the physical parameters present in the problem (chemosensitivity and strength of logistic damping). Furthermore, in the range 1-c2<α≤2 with 0<c2<c1, the solution is globally smooth. Let us emphasize that when α<1, the diffusion is in the supercritical regime.
Colecciones a las que pertenece
- D21 Artículos [417]