Mostrar el registro sencillo

dc.contributor.authorDíez Sierra, Javier 
dc.contributor.authorNavas Fernández, Salvador
dc.contributor.authorJesús Peñil, Manuel del 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-10-19T14:52:39Z
dc.date.available2023-10-19T14:52:39Z
dc.date.issued2023
dc.identifier.issn1991-959X
dc.identifier.issn1991-9603
dc.identifier.otherRTI2018-096449-B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/30260
dc.description.abstractLong time series of rainfall at different levels of aggregation (daily or hourly in most cases) constitute the basic input for hydrological, hydraulic and climate studies.However, oftentimes the length, completeness, time resolution or spatial coverage of the available records falls short of the minimum requirements to build robust estimations. Here, we introduce NEOPRENE, a Python library to generate synthetic time series of rainfall. NEOPRENE simulates multisite synthetic rainfall that reproduces observed statistics at different time aggregations. Three case studies exemplify the use of the library, focusing on extreme rainfall, as well as on disaggregating daily rainfall observations into hourly rainfall records. NEOPRENE is distributed from GitHub with an open license (GPLv3), free for research and commercial purposes alike. We also provide Jupyter notebooks with the example use cases to promote its adoption by researchers and practitioners involved in vulnerability, impact and adaptation studies.es_ES
dc.description.sponsorshipThis research has been partially supported by the Government of Cantabria (Fénix Programme), by MCIN/AEI10.13039/501100011033 and by the ERDF: “A way of making Europe” (grant no. RTI2018-096449-B-I00).es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherCopernicus Publ. para European Geosciences Uniones_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceGeoscientific Model Development, 2023, 16(17), 5035-5048es_ES
dc.titleNEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman-Scott processes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.5194/gmd-16-5035-2023
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International