Mostrar el registro sencillo

dc.contributor.authorAlgorri Genaro, José Francisco 
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorRodríguez Cobo, Luis 
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-10-06T07:19:25Z
dc.date.available2023-10-06T07:19:25Z
dc.date.issued2023-08
dc.identifier.issn1999-4923
dc.identifier.otherPID2019-107270RB-C21es_ES
dc.identifier.otherPDC2021-121172-C21es_ES
dc.identifier.otherTED2021-130378B-C2es_ES
dc.identifier.urihttps://hdl.handle.net/10902/30156
dc.description.abstractPhotodynamic therapy (PDT) is an increasingly popular dermatological treatment not only used for life-threatening skin conditions and other tumors but also for cosmetic purposes. PDT has negligible effects on underlying functional structures, enabling tissue regeneration feasibility. PDT uses a photosensitizer (PS) and visible light to create cytotoxic reactive oxygen species, which can damage cellular organelles and trigger cell death. The foundations of modern photodynamic therapy began in the late 19th and early 20th centuries, and in recent times, it has gained more attention due to the development of new sources and PSs. This review focuses on the latest advancements in light technology for PDT in treating skin cancer lesions. It discusses recent research and developments in light-emitting technologies, their potential benefits and drawbacks, and their implications for clinical practice. Finally, this review summarizes key findings and discusses their implications for the use of PDT in skin cancer treatment, highlighting the limitations of current approaches and providing insights into future research directions to improve both the efficacy and safety of PDT. This review aims to provide a comprehensive understanding of PDT for skin cancer treatment, covering various aspects ranging from the underlying mechanisms to the latest technological advancements in the field.es_ES
dc.description.sponsorshipThis work was funded by MCIN/AEI/10.13039/501100011033, FEDER, and EU NextGeneration EU/PRT with projects PID2019-107270RB-C21, PDC2021-121172-C21, and TED2021-130378B-C2. J.F.A. received funding from Ministerio de Ciencia, Innovación y Universidades of Spain under the Juan de la Cierva-Incorporación grant.es_ES
dc.format.extent34 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY) licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePharmaceutics, 2023, 15(8), 2075es_ES
dc.subject.otherPhotodynamic therapyes_ES
dc.subject.otherSkin canceres_ES
dc.subject.otherReactive oxygen species (ROS)es_ES
dc.subject.otherWearable medicinees_ES
dc.subject.otherLight-emitting materialses_ES
dc.subject.otherTextile diffuserses_ES
dc.subject.otherAdhesive deviceses_ES
dc.titleAdvanced light source technologies for photodynamic therapy of skin cancer lesionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/pharmaceutics15082075
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY) licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license