Mostrar el registro sencillo

dc.contributor.authorAbarca González, José Antonio
dc.contributor.authorDíaz Sainz, Guillermo 
dc.contributor.authorMerino García, Iván 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.authorAlbo Sánchez, Jonathan 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-10-04T08:31:48Z
dc.date.available2023-10-04T08:31:48Z
dc.date.issued2023-10
dc.identifier.issn2096-885X
dc.identifier.issn2095-4956
dc.identifier.otherPID2020-112845RB-I00es_ES
dc.identifier.otherPID2019-104050RA-100es_ES
dc.identifier.otherTED2021-129810B-C21es_ES
dc.identifier.otherPLEC2022-009398es_ES
dc.identifier.urihttps://hdl.handle.net/10902/30111
dc.description.abstractThe photoelectrochemical conversion of CO2 into value-added products emerges as an attractive approach to alleviate climate change. One of the main challenges in deploying this technology is, however, the development and optimization of (photo)electrodes and photoelectrolyzers. This review focuses on the fabrication processes, structure, and characterization of (photo)electrodes, covering a wide range of fabrication techniques, from rudimentary to automated fabrication processes. The work also highlights the most relevant features of (photo)electrodes, with special emphasis on how to measure and optimize them. Finally, the review analyses the integration of (photo)electrodes in different photoelectrolyzer architectures, analyzing the most recent research work that comprises photocathode, photoanode, photocathode-photoanode, and tandem photoelectrolyzer configurations to ideally achieve self-sustained CO2 conversion systems. Overall, comprehensive guidelines are provided for future advancements in developing effective devices for CO2 conversion, bridging the gap towards the use of sunlight as the unique energy input and practical applications.es_ES
dc.description.sponsorshipThe authors fully acknowledge the financial support received from the Spanish State Research Agency (AEI) through the projects PID2020-112845RB-I00, PID2019-104050RA-100, TED2021-129810B-C21, and PLEC2022-009398 (MCIN/AEI/10.13039/501100011033 and Unión Europea Next Generation EU/PRTR). This project has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No 101118265. Jose Antonio Abarca gratefully acknowledges the predoctoral research grant (FPI) PRE2021-097200.es_ES
dc.format.extent26 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Energy Chemistry, 2023, 85, 455-480es_ES
dc.subject.otherDecarbonizationes_ES
dc.subject.otherCO2 photoelectroreductiones_ES
dc.subject.other(Photo)Electrodeses_ES
dc.subject.otherFabrication techniqueses_ES
dc.subject.otherPhotoelectrolyzer configurationes_ES
dc.titlePhotoelectrochemical CO2 electrolyzers: from photoelectrode fabrication to reactor configurationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jechem.2023.06.032es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/HORIZON/101118265/EU/ Demonstrating energy intensive industry-integrated solutions to produce liquid renewable energy carriers from CAPTUred carbon emissionS/CAPTUS/
dc.identifier.DOI10.1016/j.jechem.2023.06.032
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International