dc.contributor.author | Gutiérrez Gutiérrez, Jaime | |
dc.contributor.author | Jiménez Urroz, Jorge | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2023-10-03T16:58:10Z | |
dc.date.available | 2023-10-03T16:58:10Z | |
dc.date.issued | 2023-10 | |
dc.identifier.issn | 1071-5797 | |
dc.identifier.issn | 1090-2465 | |
dc.identifier.uri | https://hdl.handle.net/10902/30097 | |
dc.description.abstract | Permutation polynomials of finite fields have many applications in Coding Theory, Cryptography and Combinatorics. In the first part of this paper we present a new family of local permutation polynomials based on a class of symmetric subgroups without fixed points, the so called e-Klenian groups. In the second part we use the fact that bivariate local permutation polynomials define Latin Squares, to discuss several constructions of Mutually Orthogonal Latin Squares (MOLS) and, in particular, we provide a new construction of MOLS on size a prime power. | es_ES |
dc.format.extent | 22 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Finite Fields and their Applications, 2023, 91, 102261 | es_ES |
dc.subject.other | Permutation multivariate polynomials | es_ES |
dc.subject.other | Latin squares | es_ES |
dc.subject.other | Finite fields | es_ES |
dc.title | Local permutation polynomials and the action of e-Klenian groups | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.ffa.2023.102261 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1016/j.ffa.2023.102261 | |
dc.type.version | publishedVersion | es_ES |