Mostrar el registro sencillo

dc.contributor.authorGutiérrez Gutiérrez, Jaime 
dc.contributor.authorJiménez Urroz, Jorge
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-10-03T16:58:10Z
dc.date.available2023-10-03T16:58:10Z
dc.date.issued2023-10
dc.identifier.issn1071-5797
dc.identifier.issn1090-2465
dc.identifier.urihttps://hdl.handle.net/10902/30097
dc.description.abstractPermutation polynomials of finite fields have many applications in Coding Theory, Cryptography and Combinatorics. In the first part of this paper we present a new family of local permutation polynomials based on a class of symmetric subgroups without fixed points, the so called e-Klenian groups. In the second part we use the fact that bivariate local permutation polynomials define Latin Squares, to discuss several constructions of Mutually Orthogonal Latin Squares (MOLS) and, in particular, we provide a new construction of MOLS on size a prime power.es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceFinite Fields and their Applications, 2023, 91, 102261es_ES
dc.subject.otherPermutation multivariate polynomialses_ES
dc.subject.otherLatin squareses_ES
dc.subject.otherFinite fieldses_ES
dc.titleLocal permutation polynomials and the action of e-Klenian groupses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ffa.2023.102261es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.ffa.2023.102261
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International