Local permutation polynomials and the action of e-Klenian groups
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2023-10Derechos
Attribution-NonCommercial-NoDerivatives 4.0 International
Publicado en
Finite Fields and their Applications, 2023, 91, 102261
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Permutation multivariate polynomials
Latin squares
Finite fields
Resumen/Abstract
Permutation polynomials of finite fields have many applications in Coding Theory, Cryptography and Combinatorics. In the first part of this paper we present a new family of local permutation polynomials based on a class of symmetric subgroups without fixed points, the so called e-Klenian groups. In the second part we use the fact that bivariate local permutation polynomials define Latin Squares, to discuss several constructions of Mutually Orthogonal Latin Squares (MOLS) and, in particular, we provide a new construction of MOLS on size a prime power.
Colecciones a las que pertenece
- D20 Artículos [468]