Mostrar el registro sencillo

dc.contributor.authorLópez Arias, Luis Fernando
dc.contributor.authorMaza Fernández, María Emilia 
dc.contributor.authorLópez Lara, Javier 
dc.contributor.authorLosada Rodríguez, Iñigo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-09-22T12:34:13Z
dc.date.available2023-09-22T12:34:13Z
dc.date.issued2023
dc.identifier.issn0378-3839
dc.identifier.issn1872-7379
dc.identifier.otherRTI2018-097014-B-I00
dc.identifier.urihttps://hdl.handle.net/10902/29992
dc.description.abstractSeveral numerical tools have been developed to quantify the wave height decay through vegetation, such as saltmarshes. Among them, one of the most widely used is SWAN (Simulating Waves Nearshore), where Suzuki et al. (2012) implemented and validated Mendez and Losada (2004) formulation. The reliability of this approach is based on a good estimation of plant traits and the suitable choice of the bulk drag coefficient (?CD), which is usually used as a calibration coefficient. Recently, Maza et al. (2022) described a new predictive approach to quantify wave attenuation by saltmarshes without the need for calibration coefficients. They estimate the wave damping coefficient (?) as a function of the Hydraulic Standing Biomass (HSB), a parameter defined as a function of the standing biomass, the mean height of the meadow and the wave incident conditions. In this work, Maza et al. (2022) formulation is implemented in SWAN, and validation with laboratory and field data is carried out for six saltmarsh species, showing the good performance of SWAN without calibration. Additionally, the model is extended for including standing biomass and plant height spatial variation to consider the natural variability of the vegetation characteristics along a transect from the lower-marsh to the upper-marsh. Finally, it is shown that the new implementation presents significant advantages in the modeling of wave height evolution along different saltmarsh fields when compared with the standard drag-based approach applied by using existing empirical formulations.es_ES
dc.description.sponsorshipFernando López Arias was supported by the University of Costa Rica (scholarship OAICE-26-2020). The authors are grateful to the Spanish Ministry of Science and Innovation for the funding provided in the grant RTI2018-097014-B-I00 of Proyectos de I + D + i Retos Investigación 2018 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. The authors would also like to sincerely acknowledge Dr. Vuik for the field campaign data provided which was fundamental for the field validation.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceCoastal Engineering, 2023, 185, 104380es_ES
dc.subject.otherPredictive modeles_ES
dc.subject.otherSaltmarshes_ES
dc.subject.otherWave height attenuationes_ES
dc.subject.otherSWANes_ES
dc.subject.otherHydraulic Standing Biomasses_ES
dc.subject.otherNature-based solutionses_ES
dc.titleA new predictive tool for modeling wave attenuation produced by saltmarshes in SWAN based on standing biomasses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.coastaleng.2023.104380es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.coastaleng.2023.104380
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International