Mostrar el registro sencillo

dc.contributor.authorPérez del Barrio, Amaiaes_ES
dc.contributor.authorEsteve Domínguez, Anna Salutes_ES
dc.contributor.authorMenéndez Fernández-Miranda, Pabloes_ES
dc.contributor.authorSanz Bellón, Pabloes_ES
dc.contributor.authorRodríguez González, David es_ES
dc.contributor.authorLloret Iglesias, Laraes_ES
dc.contributor.authorMarqués Fraguela, Enriquees_ES
dc.contributor.authorGonzález Mandly, Andrés Antonioes_ES
dc.contributor.authorVega, José A.es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-09-21T17:27:55Z
dc.date.available2023-09-21T17:27:55Z
dc.date.issued2023es_ES
dc.identifier.issn1552-6569es_ES
dc.identifier.issn1051-2284es_ES
dc.identifier.urihttps://hdl.handle.net/10902/29988
dc.description.abstractBackground and Purpose Intracranial hemorrhage (ICH) is a common life-threatening condition that must be rapidly diagnosed and treated. However, there is still a lack of consensus regarding treatment, driven to some extent by prognostic uncertainty. While several prediction models for ICH detection have already been published, here we present a deep learning predictive model for ICH prognosis. Methods We included patients with ICH (n = 262), and we trained a custom model for the classification of patients into poor prognosis and good prognosis, using a hybrid input consisting of brain CT images and other clinical variables. We compared it with two other models, one trained with images only (I-model) and the other with tabular data only (D-model). Results Our hybrid model achieved an area under the receiver operating characteristic curve (AUC) of .924 (95% confidence interval [CI]: .831-.986), and an accuracy of .861 (95% CI: .760-.960). The I- and D-models achieved an AUC of .763 (95% CI: .622-.902) and .746 (95% CI: .598-.876), respectively. Conclusions The proposed hybrid model was able to accurately classify patients into good and poor prognosis. To the best of our knowledge, this is the first ICH prognosis prediction deep learning model. We concluded that deep learning can be applied for prognosis prediction in ICH that could have a great impact on clinical decision-making. Further, hybrid inputs could be a promising technique for deep learning in medical imaging.es_ES
dc.description.sponsorshipAcknowledgments and disclosures: We would like to acknowledge the coding department for their help in the construction of the database, Mario Pérez Arnedo for his assistance in the development of figures, and Andrew Robson (University of Edinburgh) for reviewing language usage. The authors declare no conflict of interestes_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights© 2022 The Authorses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Neuroimaging, 2023, 33, 218-226es_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherHead CTes_ES
dc.subject.otherHybrides_ES
dc.subject.otherIntracranial hemorrhagees_ES
dc.subject.otherMedical imagees_ES
dc.subject.otherPredictiones_ES
dc.subject.otherPrognosises_ES
dc.titleA deep learning model for prognosis prediction after intracranial hemorrhagees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1111/jon.13078es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1111/jon.13078es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International