Mostrar el registro sencillo

dc.contributor.authorSantos Merino, María del Carmenes_ES
dc.contributor.authorGutiérrez Lanza, Raqueles_ES
dc.contributor.authorNogales, Juanes_ES
dc.contributor.authorGarcía, José Luises_ES
dc.contributor.authorCruz Calahorra, Fernando de la es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-09-13T18:23:28Z
dc.date.available2023-09-13T18:23:28Z
dc.date.issued2022-05-29es_ES
dc.identifier.issn2075-1729es_ES
dc.identifier.otherPID2020-117923GB-I00; PID2019-108458RB-I00 (AEI/10.13039/ 501100011033)es_ES
dc.identifier.urihttps://hdl.handle.net/10902/29913
dc.description.abstractAlpha-linolenic acid and stearidonic acid are precursors of omega-3 polyunsaturated fatty acids, essential nutrients in the human diet. The ability of cyanobacteria to directly convert atmospheric carbon dioxide into bio-based compounds makes them promising microbial chassis to sustainably produce omega-3 fatty acids. However, their potential in this area remains unexploited, mainly due to important gaps in our knowledge of fatty acid synthesis pathways. To gain insight into the cyanobacterial fatty acid biosynthesis pathways, we analyzed two enzymes involved in the elongation cycle, FabG and FabZ, in Synechococcus elongatus PCC 7942. Overexpression of these two enzymes led to an increase in C18 fatty acids, key intermediates in omega-3 fatty acid production. Nevertheless, coexpression of these enzymes with desaturases DesA and DesB from Synechococcus sp. PCC 7002 did not improve alpha-linolenic acid production, possibly due to their limited role in fatty acid synthesis. In any case, efficient production of stearidonic acid was not achieved by cloning DesD from Synechocystis sp. PCC 6803 in combination with the aforementioned DesA and DesB, reaching maximum production at 48 h post induction. According to current knowledge, this is the first report demonstrating that S. elongatus PCC 7942 can be used as an autotrophic chassis to produce stearidonic acid.es_ES
dc.description.sponsorshipFunding: This work has been funded by grants PID2020-117923GB-I00 from the Spanish Ministry of Science and Innovation (MICINN) to F.d.l.C., RobExplode PID2019-108458RB-I00 (AEI/10.13039/501100011033) from MICINN to J.N., and ALGATEC-CM project S2018/BAA-4532 from the Comunidad de Madrid, co-financed by the European Social Fund and the European Regional Development Fund to J-L.G. M.S-M. was the recipient of a Ph.D. fellowship (BES-2012-057387) from Spanish Ministry of Economy and Competitiveness (MINECO)es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceLife 2022, 12, 810es_ES
dc.subject.otherDesaturaseses_ES
dc.subject.otherOverexpressiones_ES
dc.subject.otherSynechococcus elongatus PCC 7942es_ES
dc.subject.otherAlpha-linolenic acides_ES
dc.subject.otherStearidonic acides_ES
dc.titleSynechococcus elongatus PCC 7942 as a Platform for Bioproduction of Omega-3 Fatty Acidses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/life12060810es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/life12060810es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International