Mostrar el registro sencillo

dc.contributor.authorSmer-Barreto, Vanessaes_ES
dc.contributor.authorQuintanilla Cavia, Andreaes_ES
dc.contributor.authorElliott, Richard J. R.es_ES
dc.contributor.authorDawson, John C.es_ES
dc.contributor.authorSun, Jiugenges_ES
dc.contributor.authorCampa Fernández, Víctor Manueles_ES
dc.contributor.authorLorente-Macías, Álvaroes_ES
dc.contributor.authorUnciti-Broceta, Asieres_ES
dc.contributor.authorCarragher, Neil O.es_ES
dc.contributor.authorAcosta Cobacho, Juan Carloses_ES
dc.contributor.authorOyarzún, Diego A.es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-09-04T15:17:15Z
dc.date.available2023-09-04T15:17:15Z
dc.date.issued2023es_ES
dc.identifier.issn2041-1723es_ES
dc.identifier.otherPID2020-117860GB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/29781
dc.description.abstractCellular senescence is a stress response involved in ageing and diverse disease processes including cancer, type-2 diabetes, osteoarthritis and viral infection. Despite growing interest in targeted elimination of senescent cells, only few senolytics are known due to the lack of well-characterised molecular targets. Here, we report the discovery of three senolytics using cost-effective machine learning algorithms trained solely on published data. We computationally screened various chemical libraries and validated the senolytic action of ginkgetin, periplocin and oleandrin in human cell lines under various modalities of senescence. The compounds have potency comparable to known senolytics, and we show that oleandrin has improved potency over its target as compared to best-in-class alternatives. Our approach led to several hundred-fold reduction in drug screening costs and demonstrates that artificial intelligence can take maximum advantage of small and heterogeneous drug screening data, paving the way for new open science approaches to early-stage drug discovery.es_ES
dc.description.sponsorshipAcknowledgements. The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: V.S.B. is a crossdisciplinary post-doctoral fellow supported by the University of Edinburgh and the Medical Research Council (MC_UU_00009/2). J.C.A. acknowledges funding by Cancer Research UK (CRUK) (C47559/A16243 Training & Career Development Board - Career Development Fellowship), the University of Edinburgh Chancellor’s Fellowship R42576 MRC, the Ministry of Science and Innovation of the Government of Spain (Proyecto PID2020-117860GB-I00 financed by MCIN/ AEI /10.13039/ 501100011033) and the Spanish National Research Council (CSIC). D.A.O. was supported by the United Kingdom Research and Innovation (grant EP/S02431X/1)es_ES
dc.format.extent15 p.es_ES
dc.language.isoenges_ES
dc.publisherNature Publishing Groupes_ES
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNature Communications, 2023, 14, 3445es_ES
dc.titleDiscovery of senolytics using machine learninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1038/s41467-023-39120-1es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1038/s41467-023-39120-1es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International