Similarity of samples and trimming
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/29685DOI: 10.3150/11-BEJ351
ISSN: 1350-7265
ISSN: 1573-9759
Registro completo
Mostrar el registro completo DCAutoría
Álvarez Esteban, Pedro César

Fecha
2012-05Derechos
© 2012 ISI/BS
Publicado en
Bernoulli, 2012,
18(2), 606-634
Editorial
International Statistical Institute; Chapman and Hall
Enlace a la publicación
Palabras clave
Asymptotics
Bootstrap
Consistency
Mass transportation problem
Over-fitting
Robustness
Similarity of distributions
Trimmed probability
Wasserstein distance
Resumen/Abstract
We say that two probabilities are similar at level a if they are contaminated versions (up to an a fraction) of the same common probability. We show how this model is related to minimal distances between sets of trimmed probabilities. Empirical versions turn out to present an overfitting effect in the sense that trimming beyond the similarity level results in trimmed samples that are closer than expected to each other. We show how this can be combined with a bootstrap approach to assess similarity from two data samples.
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]