• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Critical Keller-Segel meets Burgers on S1: large-time smooth solutions

    Ver/Abrir
    CriticalKeller-Segel ... (264.0Kb)
    Identificadores
    URI: https://hdl.handle.net/10902/29603
    DOI: 10.1088/0951-7715/29/12/3810
    ISSN: 0951-7715
    ISSN: 1361-6544
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Burczak, Jan; Granero Belinchón, RafaelAutoridad Unican
    Fecha
    2016-10
    Derechos
    © IOP Publishing Ltd & London Mathematical Society. This is an author-created, un-copyedited version of an article accepted for publication/published in Nonlinearity. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0951-7715/29/12/3810
    Publicado en
    Nonlinearity, 2016, 29, 3810-3836
    Editorial
    Institute of Physics
    Enlace a la publicación
    https://doi.org/10.1088/0951-7715/29/12/3810
    Palabras clave
    Parabolic–Elliptic Keller–Segel
    Critical Fractional Diffusion
    Large-Time Regularity
    Asymptotics
    Resumen/Abstract
    We show that solutions to the parabolic–elliptic Keller–Segel system on S1 with critical fractional diffusion (Delta)1/2 remain smooth for any initial data and any positive time. This disproves, at least in the periodic setting, the large-data-blowup conjecture by Bournaveas and Calvez [15]. As a tool, we show smoothness of solutions to a modified critical Burgers equation via a generalization of the ingenious method of moduli of continuity by Kiselev, Nazarov and Shterenberg [35] over a setting where the considered equation has no scaling. This auxiliary result may be interesting by itself. Finally, we study the asymptotic behavior of global solutions corresponding to small initial data, improving the existing results.
    Colecciones a las que pertenece
    • D21 Artículos [417]
    • D21 Proyectos de Investigación [326]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España