Boundedness of large-time solutions to a chemotaxis model with nonlocal and semilinear flux
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2016Derechos
© Juliusz Schauder Centre for Nonlinear Studies. The final publication is available at the TMNA webpage via https://doi.org/10.12775/TMNA.2016.012
Publicado en
Topological Methods in Nonlinear Analysis, 2016, 47(1), 369-387
Editorial
Juliusz Schauder Centre for Nonlinear Studies
Enlace a la publicación
Resumen/Abstract
A semilinear version of parabolic-elliptic Keller–Segel system with the critical nonlocal diffusion is considered in one space dimension. We show boundedness of weak solutions under very general conditions on our semilinearity. It can degenerate, but has to provide a stronger dissipation for large values of a solution than in the critical linear case or we need to assume certain (explicit) data smallness. Moreover, when one considers a logistic term with a parameter r, we obtain our results even for diffusions slightly weaker than the critical linear one and for arbitrarily large initial datum, provided r > 1. For a mild logistic dampening, we can improve the smallness condition on the initial datum up to ∼ 1/(1 − r).
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]