Well-posedness of the water-wave with viscosity problem
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2021-03Derechos
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Publicado en
Journal of differential equations, 2021, 276, 96-148
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Damped water waves
Viscosity
Well-posedness
Cross-diffusion system
Resumen/Abstract
In this paper we study the motion of a surface gravity wave with viscosity. In particular we prove two well-posedness results. On the one hand, we establish the local solvability in Sobolev spaces for arbitrary dissipation. On the other hand, we establish the global well-posedness in Wiener spaces for a sufficiently large viscosity. These results are the first rigorous proofs of well-posedness for the Dias, Dyachenko & Zakharov system (Physics Letters A2008) modelinggravity waves with viscosity when surface tension is not taken into account.
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]