Suppression of blow up by a logistic source in 2D Keller-Segel system with fractional dissipation
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2017-11-05Derechos
© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Publicado en
Journal of Differential Equations, 2017, 263(9), 6115-6142
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Keller–Segel System
Fractional Dissipation
Global-In-Time Smoothness
Logistic Source
Nonlocal Maximum Principle
Active Scalar Equations
Resumen/Abstract
We consider a two dimensional parabolic–elliptic Keller–Segel equation with a fractional diffusion of order
and a logistic term. In the case of an analogous problem with standard diffusion, introduction of the logistic term, well motivated by biological applications, results in global smoothness of solutions (i.e. suppression of blowup), compare Tello & Winkler [48]. We show that this phenomenon extends into potentially less regular case of fractional diffusions. Namely, we obtain existence of global in time regular solutions emanating from initial data with no size restrictions for
, where
depends on the equation's parameters. For an even wider range of
, we prove existence of global in time weak solution for general initial data.
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]