• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rigorous asymptotic models of water waves

    Ver/Abrir
    RigorousAsymptoticMo ... (3.169Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/29574
    DOI: 10.1007/s42286-019-00005-w
    ISSN: 2523-367X
    ISSN: 2523-3688
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Aurther, C.H.; Granero Belinchón, RafaelAutoridad Unican; Shkoller, Steve; Wilkening, Jon
    Fecha
    2019-05
    Derechos
    This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s42286-019-00005-w
    Publicado en
    WaterWaves, 2019, 1, 71-130
    Editorial
    Springer
    Enlace a la publicación
    https://doi.org/10.1007/s42286-019-00005-w
    Resumen/Abstract
    We develop a rigorous asymptotic derivation of two mathematical models of water waves that capture the full nonlinearity of the Euler equations up to quadratic and cubic interactions, respectively. Specifically, letting ϵ denote an asymptotic parameter denoting the steepness of the water wave, we use a Stokes expansion in ϵ to derive a set of linear recursion relations for the tangential component of velocity, the stream function, and the water wave parameterization. The solution of the water wave system is obtained as an infinite sum of solutions to linear problems at each O(ϵk) level, and truncation of this series leads to our two asymptotic models, which we call the quadratic and cubic h-models. These models are well posed in spaces of analytic functions. We prove error bounds for the difference between solutions of the h-models and the water wave system. We also show that the Craig–Sulem models of water waves can be obtained from our asymptotic procedure. We then develop a novel numerical algorithm to solve the quadratic and cubic h-models as well as the full water wave system. For three very different examples, we show that the agreement between the model equations and the water wave solution is excellent, even when the wave steepness is quite large. We also present a numerical example of corner formation for water waves.
    Colecciones a las que pertenece
    • D21 Artículos [417]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España