Mostrar el registro sencillo

dc.contributor.authorGranero Belinchón, Rafael 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-07-27T14:40:52Z
dc.date.available2023-07-27T14:40:52Z
dc.date.issued2020
dc.identifier.issn1539-6746
dc.identifier.issn1945-0796
dc.identifier.otherMTM2017-89976-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/29548
dc.description.abstractIn this work we study the nonlocal transport equation derived recently by Steinerberger when studying how the distribution of roots of a polynomial behaves under iterated differentation of the function. In particular, we study the well-posedness of the equation, establish some qualitative properties of the solution and give conditions ensuring the global existence of both weak and strong solutions. Finally, we present a link between the equation obtained by Steinerberger and a one-dimensional model of the surface quasi-geostrophic equation used by Chae, Córdoba, Córdoba & Fontelos.es_ES
dc.description.sponsorshipR. G-B has been funded by the grant MTM2017-89976-P from the Spanish government.es_ES
dc.format.extent18 p.es_ES
dc.language.isoenges_ES
dc.publisherInternational Presses_ES
dc.rights© International Presses_ES
dc.sourceCommunications in Mathematical Sciences, 2020, 18(6), 1643-1660es_ES
dc.titleOn a nonlocal differential equation describing roots of polynomials under differentiationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://dx.doi.org/10.4310/CMS.2020.v18.n6.a6es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.4310/CMS.2020.v18.n6.a6
dc.type.versionsubmittedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo