On a nonlocal differential equation describing roots of polynomials under differentiation
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Granero Belinchón, Rafael
Fecha
2020Derechos
© International Press
Publicado en
Communications in Mathematical Sciences, 2020, 18(6), 1643-1660
Editorial
International Press
Enlace a la publicación
Resumen/Abstract
In this work we study the nonlocal transport equation derived recently by Steinerberger when studying how the distribution of roots of a polynomial behaves under iterated differentation of the function. In particular, we study the well-posedness of the equation, establish some qualitative properties of the solution and give conditions ensuring the global existence of both weak and strong solutions. Finally, we present a link between the equation obtained by Steinerberger and a one-dimensional model of the surface quasi-geostrophic equation used by Chae, Córdoba, Córdoba & Fontelos.
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]