Mostrar el registro sencillo

dc.contributor.authorFernández Ríos, Ana 
dc.contributor.authorButnar, Isabela
dc.contributor.authorMargallo Blanco, María 
dc.contributor.authorLaso Cortabitarte, Jara 
dc.contributor.authorBorrion, Aiduan
dc.contributor.authorAldaco García, Rubén 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-07-07T08:08:53Z
dc.date.issued2023-09-10
dc.identifier.issn0048-9697
dc.identifier.issn1879-1026
dc.identifier.otherPID2019-104925RB-C31es_ES
dc.identifier.urihttps://hdl.handle.net/10902/29433
dc.description.abstractCarbon dioxide removal (CDR) technologies are considered essential to accomplish the Paris Agreement targets. Given the important contribution of the food sector to climate change, this study aims to investigate the role of two carbon capture and utilization (CCU) technologies in decarbonizing the production of spirulina, an algae product commonly consumed for its nutritional characteristics. The proposed scenarios considered the replacement of synthetic food-grade CO2 in Arthrospira platensis cultivation (BAU scenario) with CO2 from beer fermentation (BRW) and CO2 from DACC (direct air carbon capture) (SDACC), representing two alternatives with great potential in the short and medium-long term, respectively. The methodology follows the Life Cycle Assessment guidelines, considering a cradle-to-gate scope and a functional unit equivalent to the annual production of spirulina in a Spanish artisanal plant. Results showed a better environmental performance of both CCU scenarios as compared to BAU, reaching a reduction of greenhouse gas (GHG) emissions of 52 % in BRW and of 46 % in SDACC. Although the brewery CCU offers a deeper carbon mitigation of spirulina production, the process cannot reach net zero GHG emissions due to residual burdens across the supply chain. In comparison, the DACC unit could potentially supply both the CO2 needed in spirulina production and work as a CDR to compensate residual emissions, which opens the door for further research on its technical and economic feasibility in the food sector.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Science and Innovation through the KAIROS-BIOCIR project (PID2019-104925RB) (AEO/FEDER, UE). Ana Fernández-Ríos thanks the Spanish Ministry of Science, Innovation and Universities for the financial support via the research fellowship RE2020-094029. The authors also thank the manager of the spirulina production plant for the provision of data.es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceScience of the Total Environment, 2023, 890, 164362es_ES
dc.subject.otherCarbon dioxide removales_ES
dc.subject.otherLife cycle assessmentes_ES
dc.subject.otherNet zeroes_ES
dc.subject.otherCircular economyes_ES
dc.subject.otherArthrospira platensises_ES
dc.subject.otherEnvironmental impactes_ES
dc.titleCarbon accounting of negative emissions technologies integrated in the life cycle of spirulina supplementses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.scitotenv.2023.164362es_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.identifier.DOI10.1016/j.scitotenv.2023.164362
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2025-09-10
dc.date.embargoEndDate2025-09-10


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license