Mostrar el registro sencillo

dc.contributor.authorRey-Stolle Prado, Ignacio
dc.contributor.authorGarcía Vara, Iván
dc.contributor.authorBarrigón Montañés, Enrique
dc.contributor.authorOlea Ariza, Javier
dc.contributor.authorPastor Pastor, David
dc.contributor.authorOchoa Gómez, Mario 
dc.contributor.authorBarrutia Poncela, Laura
dc.contributor.authorAlgora del Valle, Carlos
dc.contributor.authorWalukiewicz, Wladek
dc.date.accessioned2023-06-08T13:18:17Z
dc.date.available2023-06-08T13:18:17Z
dc.date.issued2017-09-06
dc.identifier.issn0094-243X
dc.identifier.issn1551-7616
dc.identifier.otherTEC2015-66722-Res_ES
dc.identifier.otherTEC2014-54260-C3-1-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/29277
dc.description.abstractTunnel junctions are essential components of multijunction solar cells. These highly doped p/n junctions provide the electrical interconnect between the subcells that constitute a multijunction solar cell device. The conductivity and the peak tunneling current of tunnel diodes are known to be severely affected by thermal load. This is a general phenomenon observed in tunnel junctions despite the materials used, the dopants employed or the growth technique applied. Despite this generality, the explanations for this thermal degradation tend to be quite material/dopant specific. On the contrary, in this work we apply the amphoteric native defect model to explain this issue. In this context, the degradation can be explained as a consequence of the net loss of free carrier concentration produced by the creation of native compensating defects in the highly doped layers of the tunnel junction. Experiments carried out on n++ GaAs agree well with the model.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministerio de Economía y Competitividad through projects with code TEC2015-66722-R and projects TEC2014-54260-C3-1-P and by the Comunidad de Madrid through the project MADRID-PV (S2013/MAE-2780). I. García (RYC-2014-15621) and D. Pastor (RYC-2014-16936) acknowledge the financial support from the Spanish Programa Estatal de Promoción del Talento y su Empleabilidad through a Ramón y Cajal grant. Part of this work was performed at the EMAT, National Center for Electron Microscopy/Molecular Foundry and was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. W. Walukiewicz acknowledges funding support from the Singapore National Research Foundation (NRF) through the Singapore Berkeley Research Initiative for Sustainable Energy (SinBeRISE) Programme.es_ES
dc.format.extent7 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Institute of Physicses_ES
dc.rights© American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Rey-Stolle, I., García, I., Barrigón, E., Olea, J., Pastor, D., Ochoa, M., Barrutia, L., Algora, C. & Walukiewicz, W. 2017. On the thermal degradation of tunnel diodes in multijunction solar cells. AIP Conference Proceedings, 1881(1), 040005 and may be found at https://doi.org/10.1063/1.5001427es_ES
dc.sourceAIP Conference Proceedings, 2017, 1881(1), 040005es_ES
dc.source13th International Conference on Concentrator Photovoltaic Systems (CPV-13), Ottawa, Canada, 2017es_ES
dc.titleOn the thermal degradation of tunnel diodes in multijunction solar cellses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1063/1.5001427
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo