dc.contributor.author | Jiang, Yan | |
dc.contributor.author | Feurer, Thomas | |
dc.contributor.author | Carron, Romain | |
dc.contributor.author | Torres Sevilla, Galo | |
dc.contributor.author | Moser, Thierry | |
dc.contributor.author | Pisoni, Stefano | |
dc.contributor.author | Erni, Rolf | |
dc.contributor.author | Rossell, Marta-Dacil | |
dc.contributor.author | Ochoa Gómez, Mario | |
dc.contributor.author | Hertwig, Ramis | |
dc.contributor.author | Tiwari, Ayodhya Nath | |
dc.contributor.author | Fu, Fan | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2023-05-31T16:48:51Z | |
dc.date.available | 2023-05-31T16:48:51Z | |
dc.date.issued | 2020-06-23 | |
dc.identifier.issn | 1936-0851 | |
dc.identifier.issn | 1936-086X | |
dc.identifier.uri | https://hdl.handle.net/10902/29176 | |
dc.description.abstract | Four-terminal (4-T) tandem solar cells (e.g., perovskite/CuInSe2 (CIS)) rely on three transparent conductive oxide electrodes with high mobility and low free carrier absorption in the near-infrared (NIR) region. In this work, a reproducible In2O3:H (IO:H) film deposition process is developed by independently controlling H2 and O2 gas flows during magnetron sputtering, yielding a high mobility value up to 129 cm2 V–1 s–1 in highly crystallized IO:H films annealed at 230 °C. Optimization of H2 and O2 partial pressures further decreases the crystallization temperature to 130 °C. By using a highly crystallized IO:H film as the front electrode in NIR-transparent perovskite solar cell (PSC), a 17.3% steady-state power conversion efficiency and an 82% average transmittance between 820 and 1300 nm are achieved. In combination with an 18.1% CIS solar cell, a 24.6% perovskite/CIS tandem device in 4-T configuration is demonstrated. Optical analysis suggests that an amorphous IO:H film (without postannealing) and a partially crystallized IO:H film (postannealed at 150 °C), when used as a rear electrode in a NIR-transparent PSC and a front electrode in a CIS solar cell, respectively, can outperform the widely used indium-doped zinc oxide (IZO) electrodes, leading to a 1.38 mA/cm2 short-circuit current (Jsc) gain in the bottom CIS cell of 4-T tandems. | es_ES |
dc.description.sponsorship | This work was supported by funding from the Swiss Federal Office of Energy (SFOE)-BFE (project no. SI/501805-01), Swiss National Science Foundation (SNF)-Bridge (project no. 20B2-1_176552/1), and the European Research Council (ERC) under EU’s Horizon 2020 Research and Innovation Program (grant agreement no. 681312). We thank Dr. Yi Hou for the supply of the antireflection foil. | es_ES |
dc.format.extent | 11 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.rights | © ACS under an ACS AuthorChoice License | es_ES |
dc.source | ACS Nano, 2020, 14(6), 7502-7512 | es_ES |
dc.subject.other | Hydrogenated indium oxide | es_ES |
dc.subject.other | Carrier mobility | es_ES |
dc.subject.other | Perovskite | es_ES |
dc.subject.other | Tandem solar cell | es_ES |
dc.subject.other | Optical analysis | es_ES |
dc.title | High-mobility In2O3:H electrodes for four-terminal perovskite/CuInSe2 tandem solar cells | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1021/acsnano.0c03265 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1021/acsnano.0c03265 | |
dc.type.version | publishedVersion | es_ES |