Mostrar el registro sencillo

dc.contributor.authorPizzichillo, Fabio 
dc.contributor.authorBosch, Hanne Van Den
dc.date.accessioned2023-05-31T08:42:17Z
dc.date.available2023-05-31T08:42:17Z
dc.date.issued2021-07-15
dc.identifier.issn1664-039X
dc.identifier.issn1664-0403
dc.identifier.otherMTM2014-53850-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/29162
dc.description.abstractWe investigate the self-adjointness of the two-dimensional Dirac operator D, with quantum-dot and Lorentz-scalar δ-shell boundary conditions, on piecewise C2 domains (with finitely many corners). For both models, we prove the existence of a unique self-adjoint realization whose domain is included in the Sobolev space H1/2, the formal form domain of the free Dirac operator. The main part of our paper consists of a description of the domain of the adjoint operator D⁕ in terms of the domain of D and the set of harmonic functions that verify some mixed boundary conditions. Then, we give a detailed study of the problem on an infinite sector, where explicit computations can be made: we find the self-adjoint extensions for this case. The result isthen translated to general domains by a coordinate transformation.es_ES
dc.description.sponsorshipThis work was partially developed while Fabio Pizzichillo was employed at BCAM - Basque Center for Applied Mathem Self-adjointness of Dirac operators on corner domains 1077 by ERCEA Advanced Grant 2014 669689 – HADE, by the MINECO project MTM2014-53850-P, by Basque Government project IT-641-13 and also by the Basque Government through the BERC 2018-2021 program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2017-0718. He has also has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement MDFT No 725528 of Mathieu Lewin). The work of Hanne Van Den Bosch has been partially supported by ANID (formerly CONICYT) (Chile) through PCI Project REDI170157, Fondecyt Projects # 318–0059 and # 118–0355, and by the Center for Mathematical Modeling through Grant PIA AFB-170001.es_ES
dc.format.extent37 p.es_ES
dc.language.isoenges_ES
dc.publisherEuropean Mathematical Society Publishing Housees_ES
dc.rights© EMS Presses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of Spectral Theory, 2021, 11(3), 1043-1079es_ES
dc.subject.otherDirac operatores_ES
dc.subject.otherQuantum-dotes_ES
dc.subject.otherLorentz-scalar δ-shelles_ES
dc.subject.otherBoundary conditionses_ES
dc.subject.otherSelfadjoint operatores_ES
dc.subject.otherConformal mapes_ES
dc.subject.otherCorner domainses_ES
dc.titleSelf-adjointness of two-dimensional Dirac operators on corner domainses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://doi.org/10.4171/JST/365es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.4171/JST/365
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© EMS PressExcepto si se señala otra cosa, la licencia del ítem se describe como © EMS Press