Self-adjointness of two-dimensional Dirac operators on corner domains
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/29162DOI: 10.4171/JST/365
ISSN: 1664-039X
ISSN: 1664-0403
Registro completo
Mostrar el registro completo DCFecha
2021-07-15Derechos
© EMS Press
Publicado en
Journal of Spectral Theory, 2021, 11(3), 1043-1079
Editorial
European Mathematical Society Publishing House
Enlace a la publicación
Palabras clave
Dirac operator
Quantum-dot
Lorentz-scalar δ-shell
Boundary conditions
Selfadjoint operator
Conformal map
Corner domains
Resumen/Abstract
We investigate the self-adjointness of the two-dimensional Dirac operator D, with quantum-dot and Lorentz-scalar δ-shell boundary conditions, on piecewise C2 domains (with finitely many corners). For both models, we prove the existence of a unique self-adjoint realization whose domain is included in the Sobolev space H1/2, the formal form domain of the free Dirac operator. The main part of our paper consists of a description of the domain of the adjoint operator D⁕ in terms of the domain of D and the set of harmonic functions that verify some mixed boundary conditions. Then, we give a detailed study of the problem on an infinite sector, where explicit computations can be made: we find the self-adjoint extensions for this case. The result isthen translated to general domains by a coordinate transformation.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]