Mostrar el registro sencillo

dc.contributor.advisor
dc.contributor.authorChang, Yu-Han
dc.contributor.authorCarron, Romain
dc.contributor.authorOchoa Gómez, Mario 
dc.contributor.authorBozal Ginesta, Carlota
dc.contributor.authorTiwari, Ayodhya Nath
dc.contributor.authorDurrant, James Robert
dc.contributor.authorSteier, Ludmilla
dc.date.accessioned2023-05-29T14:32:34Z
dc.date.available2023-05-29T14:32:34Z
dc.date.issued2021-02-24
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/10902/29133
dc.description.abstractCu(In,Ga)Se2 solar cells have markedly increased their efficiency over the last decades currently reaching a record power conversion efficiency of 23.3%. Key aspects to this efficiency progress are the engineered bandgap gradient profile across the absorber depth, along with controlled incorporation of alkali atoms via post-deposition treatments. Whereas the impact of these treatments on the carrier lifetime has been extensively studied in ungraded Cu(In,Ga)Se2 films, the role of the Ga-gradient on carrier mobility has been less explored. Here, transient absorption spectroscopy (TAS) is utilized to investigate the impact of the Ga-gradient profile on charge carrier dynamics. Minority carriers excited in large Cu(In,Ga)Se2 grains with a [Ga]/([Ga]+[In]) ratio between 0.2–0.5 are found to drift-diffuse across ≈1/3 of the absorber layer to the engineered bandgap minimum within 2 ns, which corresponds to a mobility range of 8.7–58.9 cm2 V−1 s−1. In addition, the recombination times strongly depend on the Ga-content, ranging from 19.1 ns in the energy minimum to 85 ps in the high Ga-content region near the Mo-back contact. An analytical model, as well as drift-diffusion numerical simulations, fully decouple carrier transport and recombination behaviour in this complex composition-graded absorber structure, demonstrating the potential of TAS.es_ES
dc.description.sponsorshipY.-H.C. Chang thanks the Ministry of Education of Taiwan for her Ph.D. scholarship, and Dr. Michael Sachs for fruitful discussions on TA data. J.R.D. would like to thank the UKRI Global Challenge Research Fund project SUNRISE (EP/P032591/1). L.S. acknowledges funding from the European Research Council (H2020-MSCA-IF-2016, Grant No. 749231). This work received financial support from the Swiss State Secretary for Education, Research and Innovation (SERI) under contract number 17.00105 (EMPIR project HyMet). The EMPIR programme is co-financed by the Participating States and by the European Union’s Horizon 2020 research and innovation programme.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherWiley-Blackwelles_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceAdvanced Energy Materials, 2021, 11(8), 2003446es_ES
dc.subject.otherCharge carrier recombination
dc.subject.otherCIGS solar cells
dc.subject.otherComposition gradient
dc.subject.otherMinority carrier mobility
dc.subject.otherTransient absorption spectroscopy
dc.titleInsights from transient absorption spectroscopy into electron dynamics along the Ga-gradient in Cu(In,Ga)Se2 solar cellses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1002/aenm.202003446es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1002/aenm.202003446
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International