Boundary triples for the Dirac operator with Coulomb-type spherically symmetric perturbations
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/29122DOI: 10.1063/1.5063986
ISSN: 0022-2488
ISSN: 1089-7658
ISSN: 1527-2427
Registro completo
Mostrar el registro completo DCFecha
2019-04-12Derechos
© American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Biagio Cassano, Fabio Pizzichillo; Boundary triples for the Dirac operator with Coulomb-type spherically symmetric perturbations. J. Math. Phys. 1 April 2019; 60 (4): 041502. and may be found at https://doi.org/10.1063/1.5063986.
Publicado en
Journal of Mathematical Physics, 2019, 60(4), 041502
Editorial
American Institute of Physics
Enlace a la publicación
Resumen/Abstract
We determine explicitly a boundary triple for the Dirac operator H := -ia .V + mB + V(x) in R3 , for m c R and V(x) = IxI-1(vI4 + µB-il. x/IxIB), with v, µ, l c R. Consequently, we determine all the self-adjoint realizations of H in terms of the behavior of the functions of their domain in the origin. When supxIxIIV(x)<=1, we discuss the problem of selecting the distinguished extension requiring that its domain is included in the domain of the appropriate quadratic form.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]