dc.contributor.author | Chatrchyan, S. | |
dc.contributor.author | Brochero Cifuentes, Javier Andrés | |
dc.contributor.author | Cabrillo Bartolomé, José Iban | |
dc.contributor.author | Calderón Tazón, Alicia | |
dc.contributor.author | Chuang, S. H. | |
dc.contributor.author | Duarte Campderros, Jorge | |
dc.contributor.author | Felcini, Marta | |
dc.contributor.author | Fernández García, Marcos | |
dc.contributor.author | Gómez Gramuglio, Gervasio | |
dc.contributor.author | González Sánchez, Francisco Javier | |
dc.contributor.author | Jordá Lope, Clara | |
dc.contributor.author | Lobelle Pardo, Patricia | |
dc.contributor.author | López Virto, María Amparo | |
dc.contributor.author | Marco de Lucas, Jesús | |
dc.contributor.author | Marco de Lucas, Rafael José | |
dc.contributor.author | Martínez Rivero, Celso | |
dc.contributor.author | Matorras Weinig, Francisco | |
dc.contributor.author | Muñoz Sánchez, Francisca Javiela | |
dc.contributor.author | Rodrigo Anoro, Teresa | |
dc.contributor.author | Rodríguez Marrero, Ana Yaiza | |
dc.contributor.author | Ruiz Jimeno, Alberto | |
dc.contributor.author | Scodellaro, Luca | |
dc.contributor.author | Sobrón Sañudo, Mar | |
dc.contributor.author | Vila Álvarez, Iván | |
dc.contributor.author | Vilar Cortabitarte, Rocío | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2023-05-19T10:40:49Z | |
dc.date.available | 2023-05-19T10:40:49Z | |
dc.date.issued | 2012-10 | |
dc.identifier.issn | 1748-0221 | |
dc.identifier.uri | https://hdl.handle.net/10902/28980 | |
dc.description.abstract | The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 pb−1 of data collected in pp collisions at √s = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV/c is above 95% over the whole region of pseudorapidity covered by the CMS muon system, |η| < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeVc is higher than 90% over the full η range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100GeV/c and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV/c. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation. | es_ES |
dc.description.sponsorship | We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes. This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding
Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l’Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the State Commission for Scientific Research, Poland; the Fundac¸ao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Science and
Technologies of the Russian Federation, and Russian Ministry of Atomic Energy; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, U.K.; the U.S. Department of Energy, and the U.S. National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the
Alexander von Humboldt Foundation; the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); and the Council of Science and Industrial Research, India. | es_ES |
dc.format.extent | 87 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Institute of Physics | es_ES |
dc.rights | Atribución 3.0 España. ©CERN 2012 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution licence 3.0 by IOP Publishing Ltd and Sissa Medialab srl. | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Journal of Instrumentation, 2012, 7(10), P10002 | es_ES |
dc.subject.other | Performance of high energy physics detectors | es_ES |
dc.subject.other | Large detector-systems performance | es_ES |
dc.subject.other | Simulation methods and programs | es_ES |
dc.subject.other | Particle identification methods | es_ES |
dc.subject.other | Muon spectrometers | es_ES |
dc.subject.other | Particle tracking detectors | es_ES |
dc.subject.other | Particle tracking detectors (Gaseous detectors) | es_ES |
dc.title | Performance of CMS muon reconstruction in pp collision events at √s = 7 TeV | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1088/1748-0221/7/10/P10002 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1088/1748-0221/7/10/P10002 | |
dc.type.version | publishedVersion | es_ES |