Mostrar el registro sencillo

dc.contributor.authorGutiérrez Vela, Yael 
dc.contributor.authorLosurdo, María
dc.contributor.authorGarcía Fernández, Pablo (físico) 
dc.contributor.authorSainz de la Maza Kaufmann, Marta
dc.contributor.authorGonzález Fernández, Francisco 
dc.contributor.authorBrown, April S.
dc.contributor.authorEveritt, Henry O.
dc.contributor.authorJunquera Quintana, Francisco Javier 
dc.contributor.authorMoreno Gracia, Fernando 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-05-17T16:39:26Z
dc.date.available2023-05-17T16:39:26Z
dc.date.issued2019-10
dc.identifier.issn2159-3930
dc.identifier.otherPGC2018-096955-B-C41es_ES
dc.identifier.urihttps://hdl.handle.net/10902/28941
dc.description.abstractIn order to exploit gallium’s (Ga) rich polymorphism in the design of phase-change plasmonic systems, accurate understanding of the dielectric function of the different Ga-phases is crucial. The dielectric dispersion profiles of those phases appearing at atmospheric pressure have been reported in the literature, but there is no information on the dielectric function of the high-pressure Ga-phases. Through first principles calculations we present a comprehensive analysis of the interdependence of the crystal structure, band structure, and dielectric function of two high-pressure Ga phases (Ga(II) and Ga(III)). The plasmonic behavior of these high-pressure Ga-phases is compared to those stable (liquid- and α-Ga) and metastable (β-, γ- and δ-Ga) at atmospherics pressure. This analysis can have important implications in the design of pressure-driven phase-change Ga plasmonic devices and high-pressure SERS substrates.es_ES
dc.description.sponsorshipEuropean Commission (GA692034); Army Research Laboratory (W911NF-17-2-0023); Ministerio de Economía, Industria y Competitividad, Gobierno de España (PGC2018-096955-B-C41); Ramón y Cajal Grant (RyC-2013-12515); SODERCAN through the Research Vice-rectorate of the Universidad de Cantabria (4JU2864661). M.L. acknowledges the support of the European Commission under the H2020 grant TWINFUSYON (GA692034). Y.G. and F.M. acknowledges the support by the Army Research Laboratory under Cooperative Agreement Number W911NF-17-2-0023 and by SODERCAN (Sociedad para el Desarrollo de Cantabria) and the Research Vicerrectorate of the University of Cantabria through project 4JU2864661. Y.G. thanks the University of Cantabria for her FPU grant. P.G.-F. and J.J. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through grant number PGC2018-096955-B-C41, and P.G.-F. acknowledges support from Ramón y Cajal grant no. RyC-2013-12515.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherOSA, Optical Society of Americaes_ES
dc.rights© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreementes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceOptical Materials Express, 2019, 9(10), 4050-4060es_ES
dc.titleDielectric function and plasmonic behavior of Ga(II) and Ga(III)es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1364/OME.9.004050es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1364/OME.9.004050
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing AgreementExcepto si se señala otra cosa, la licencia del ítem se describe como © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement