Performance of TiO2-based tubular membranes in the photocatalytic degradation of organic compounds
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Barquín Díez, Carmen




Fecha
2023-04-20Derechos
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Publicado en
Membranes, 2023, 13(4), 448
Editorial
MDPI
Palabras clave
Photocatalysis
Filtration
Membrane
TiO2
TiO2/Ag
Resumen/Abstract
This work presents the photocatalytic degradation of organic pollutants in water with TiO2 and TiO2/Ag membranes prepared by immobilising photocatalysts on ceramic porous tubular supports. The permeation capacity of TiO2 and TiO2/Ag membranes was checked before the photocatalytic application, showing high water fluxes (-758 and 690 L m-2 h-1 bar-1, respectively) and <2% rejection against the model pollutants sodium dodecylbenzene sulfonate (DBS) and dichloroacetic acid (DCA). When the membranes were submerged in the aqueous solutions and irradiated with UV-A LEDs, the photocatalytic performance factors for the degradation of DCA were similar to those obtained with suspended TiO2 particles (1.1-fold and 1.2-fold increase, respectively). However, when the aqueous solution permeated through the pores of the photocatalytic membrane, the performance factors and kinetics were two-fold higher than for the submerged membranes, mostly due to the enhanced contact between the pollutants and the membranes photocatalytic sites where reactive species were generated. These results confirm the advantages of working in a flow-through mode with submerged photocatalytic membranes for the treatment of water polluted with persistent organic molecules, thanks to the reduction in the mass transfer limitations.
Colecciones a las que pertenece
- D23 Artículos [522]
- D23 Proyectos de Investigación [503]
