Mostrar el registro sencillo

dc.contributor.authorÁlvarez Vizoso, Javier 
dc.contributor.authorKirby, Michael
dc.contributor.authorPeterson, Chris
dc.date.accessioned2023-05-17T07:43:47Z
dc.date.available2023-05-17T07:43:47Z
dc.date.issued2020-11-01
dc.identifier.issn0024-3795
dc.identifier.issn1873-1856
dc.identifier.urihttps://hdl.handle.net/10902/28916
dc.description.abstractLocal Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimension, determined by the intersection with higher-dimensional cylinders and balls in the ambient space, have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose a generalization of the classical third fundamental form to general submanifolds and prove that the local eigenvalue decomposition (EVD) of the covariance matrices have asymptotic expansions that contain the curvature information encoded by the traces of this tensor. This proves the general correspondence between the local EVD integral invariants and differential-geometric curvature for arbitrary embedded Riemannian submanifolds, found so far for curves and hypersurfaces only. Thus, we establish a key theoretical bridge, via covariance matrices at scale, for potential applications in manifold learning relating the statistics of point clouds sampled from Riemannian submanifolds to the underlying geometry.es_ES
dc.description.sponsorshipWe would like to thank Louis Scharf for very helpful discussions during the writing of this paper. J.Á.-V. would like to thank Miguel Dovale for helpful insights. This paper is based on research partially supported by the National Science Foundation under Grants No. DMS-1513633, and DMS-1322508.es_ES
dc.format.extent31 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Inc.es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceLinear Algebra and Its Applications, 2020, 604, 21-51es_ES
dc.subject.otherPrincipal component analysises_ES
dc.subject.otherLocal eigenvalue decompositiones_ES
dc.subject.otherCurvature tensores_ES
dc.subject.otherManifold learninges_ES
dc.titleLocal eigenvalue decomposition for embedded Riemannian manifoldses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.laa.2020.06.006es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.laa.2020.06.006
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International