Mostrar el registro sencillo

dc.contributor.authorÁlvarez Vizoso, Javier 
dc.contributor.authorKirby Michael
dc.contributor.authorPeterson, Chris
dc.date.accessioned2023-05-17T07:41:50Z
dc.date.available2023-05-17T07:41:50Z
dc.date.issued2020-10-01
dc.identifier.issn0024-3795
dc.identifier.issn1873-1856
dc.identifier.urihttps://hdl.handle.net/10902/28915
dc.description.abstractIntegral invariants obtained from Principal Component Analysis on a small kernel domain of a submanifold encode important geometric information classically defined in differential-geometric terms. We generalize to hypersurfaces in any dimension major results known for surfaces in space, which in turn yield a method to estimate the extrinsic and intrinsic curvature tensor of an embedded Riemannian submanifold of general codimension. In particular, integral invariants are defined by the volume, barycenter, and the EVD of the covariance matrix of the domain. We obtain the asymptotic expansion of such invariants for a spherical volume component delimited by a hypersurface and for the hypersurface patch created by ball intersections, showing that the eigenvalues and eigenvectors can be used as multi-scale estimators of the principal curvatures and principal directions. This approach may be interpreted as performing statistical analysis on the underlying point-set of a submanifold in order to obtain geometric descriptors at scale with potential applications to Manifold Learning and Geometry Processing of point clouds.es_ES
dc.description.sponsorshipWe would like to thank Louis Scharf for very helpful discussions during the writing of this paper. This paper is based on research partially supported by the National Science Foundation under Grants No. DMS-1513633, and DMS-1322508.es_ES
dc.format.extent27 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Inc.es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceLinear Algebra and Its Applications, 2020, 602, 179-205es_ES
dc.subject.otherRiemann curvature tensores_ES
dc.subject.otherPrincipal component analysises_ES
dc.subject.otherLocal eigenvalue decompositiones_ES
dc.subject.otherManifold learninges_ES
dc.titleManifold curvature learning from hypersurface integral invariantses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.laa.2020.05.020es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.laa.2020.05.020
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International