dc.contributor.author | Algorri Genaro, José Francisco | |
dc.contributor.author | Zografopoulos, Dimitrios C. | |
dc.contributor.author | Ferraro, Antonio | |
dc.contributor.author | García Cámara, Braulio | |
dc.contributor.author | Vergaz Benito, Ricardo | |
dc.contributor.author | Beccherelli, Romeo | |
dc.contributor.author | Sánchez Pena, José Manuel | |
dc.date.accessioned | 2023-05-16T17:30:52Z | |
dc.date.available | 2023-05-16T17:30:52Z | |
dc.date.issued | 2019-01 | |
dc.identifier.issn | 2079-4991 | |
dc.identifier.other | TEC2013-47342-C2-2-R | es_ES |
dc.identifier.other | TEC2016-77242-C3-1-R | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/28911 | |
dc.description.abstract | This work proposes the use of the refractive index sensitivity of non-radiating anapole modes of high-refractive-index nanoparticles arranged in planar metasurfaces as a novel sensing principle. The spectral position of anapole modes excited in hollow silicon nanocuboids is first investigated as a function of the nanocuboid geometry. Then, nanostructured metasurfaces of periodic arrays of nanocuboids on a glass substrate are designed. The metasurface parameters are properly selected such that a resonance with ultrahigh Q-factor, above one million, is excited at the target infrared wavelength of 1.55µm. The anapole-induced resonant wavelength depends on the refractive index of the analyte superstratum, exhibiting a sensitivity of up to 180 nm/RIU. Such values, combined with the ultrahigh Q-factor, allow for refractometric sensing with very low detection limits in a broad range of refractive indices. Besides the sensing applications, the proposed device can also open new venues in other research fields, such as non-linear optics, optical switches, and optical communications. | es_ES |
dc.description.sponsorship | This work was supported by the Research and Development Program through the Comunidad de Madrid
(SINFOTON S2013/MIT-2790), the Ministerio de Economía y Competitividad of Spain (TEC2013-47342-C2-2-R) and
the funding from Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) for the
Project TEC2016-77242-C3-1-R AEI/FEDER,UE. | es_ES |
dc.format.extent | 13 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Nanomaterials, 2019, 9(1), 30 | es_ES |
dc.subject.other | Dielectric nanoparticles | es_ES |
dc.subject.other | Anapole mode | es_ES |
dc.subject.other | Metasurfaces | es_ES |
dc.subject.other | Sensing devices | es_ES |
dc.title | Anapole modes in hollow nanocuboid dielectric metasurfaces for refractometric sensing | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.3390/nano9010030 | |
dc.type.version | publishedVersion | es_ES |